
IMPERFECT INFORMATION IN SOFTWARE DESIGN PROCESSES

PROEFSCHRIFT

ter verkrijging van

de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,

prof. dr. W. H. M. Zijm,

volgens besluit van het College voor Promoties

in het openbaar te verdedigen

op donderdag 5 juli 2007 om 15.00 uur

door

Johannes Albertus Rudolf Noppen

geboren op 26 februari 1978

te Doetinchem

Dit proefschrift is goedgekeurd door:

Prof. Dr. Ir. M. Aksit (promotor)
Dr. P. M. van den Broek (assistent-promotor)

Imperfect Information in

Software Design Processes

Joost Noppen

Dissertation Committee:

Prof. Dr. Ir. A. J. Mouthaan

Prof. Dr. Ir. M. Aksit (promotor, University of Twente)
Dr. P. M. van den Broek (assistant-promotor, University of Twente)

Prof. Dr. H. Brinksma (University of Twente)
Dr. P. C. Clements (Carnegie Mellon University)
Prof. Dr. A. Finkelstein (University College London)
Prof. Dr. W. Pedrycz (University of Alberta)
Prof. Dr. M. A. Rashid (University of Lancaster)
Dr. Ir. A. Rensink (University of Twente)

Joost Noppen

Imperfect Information in Software Design Processes
PhD Thesis, University of Twente, 2007
ISBN 978-90-365-2511-4

IPA Dissertation Series 2007-11
CTIT PhD Thesis Series (ISSN 1381-3617) 07-99

The work in this thesis has been carried out under the auspices of the research school IPA
(Institute for Programming research and Algorithmics) and within the context of the Centre for
Telematics and Information Technology (CTIT)

Printed by Gildeprint BV, Enschede, the Netherlands
Cover design by Lotte Nijkamp

Copyright © Joost Noppen, 2007

IMPERFECT INFORMATION IN SOFTWARE DESIGN PROCESSES

PROEFSCHRIFT

ter verkrijging van

de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,

prof. dr. W. H. M. Zijm,

volgens besluit van het College voor Promoties

in het openbaar te verdedigen

op donderdag 5 juli 2007 om 15.00 uur

door

Johannes Albertus Rudolf Noppen

geboren op 26 februari 1978

te Doetinchem

Dit proefschrift is goedgekeurd door:

Prof. Dr. Ir. M. Aksit (promotor)
Dr. P. M. van den Broek (assistent-promotor)

In loving memory of

Albert Oude Nijhuis

and

Ben Wubbels

I dearly wish you would have been able to see me complete this work.

Table of Contents

I

TABLE OF CONTENTS

Table of Contents ... I

Acknowledgements .. VII

Abstract .. IX

Chapter 1 - Introduction ... 1

1.1 Introduction ... 1

1.2 Problem Statement .. 2

1.3 Approach.. 3

1.4 Contributions ... 4

1.5 Outline of the Thesis.. 5

Chapter 2 - Definitions and Background 9

2.1 Introduction ... 9

2.2 Imperfect Information in Software Design Processes 10
2.2.1 Introduction ... 10

2.2.2 The Waterfall Model...11

2.2.3 Rational Unified Process ... 12

2.2.4 Agile Software Development .. 14

2.2.5 Analysis-Synthesis... 15

2.2.6 Architecture Trade-off Analysis Method... 16

2.3 Types of Imperfect Information ... 17

2.4 Models for Imperfect Information... 18
2.4.1 Introduction ... 18

2.4.2 Probability Theory... 19

2.4.3 Fuzzy Set Theory... 20

2.4.4 Fuzzy Probability Theory .. 23

2.5 Decision Support during Software Development 24
2.5.1 Introduction ... 24

2.5.2 Optimization-based Decision Support... 24

2.6 An Overview of Research on Treating Imperfect Information....... 25
2.6.1 General Approaches .. 25

2.6.2 Explicit Support for Imperfection in Development Methods............................ 27

Imperfect Information in Software Design Processes

II

2.7 Conclusions .. 28

Chapter 3 - Decision Support for Imperfect
 Functional Requirements 31

3.1 Introduction ... 31

3.2 Imperfect Information in Functional Requirements........................ 32

3.3 Relationship Tracing for Intermediate Design Artifacts 32
3.3.1 Introduction ... 32

3.3.2 The Artifact Trace Model .. 33

3.3.3 Trade-offs between Stakeholder Desires and Implementation Effort................ 35

3.4 Case Study: The Traffic Management System.................................. 37
3.4.1 Example Case: The Traffic Management System ... 37

3.4.2 The Architectural Design of the Traffic Management System.......................... 39

3.5 A Model for Imperfect Requirements based on Fuzzy Sets 42
3.5.1 Imperfect Information in Functional Requirement Specifications 42

3.5.2 The Fuzzy Requirement Concept .. 43

3.5.3 Fuzzy Requirements in the Artifact Trace Model ... 44

3.5.4 Trade-off Analysis with Fuzzy Requirements ... 47

3.6 The Traffic Management System Revisited 48
3.6.1 Architecture Design with Fuzzy Requirements... 48

3.6.2 Optimization of Traffic Management System Architecture 53

3.7 Related Work ... 55
3.7.1 Traceability of Intermediate Design Artifacts in Software Engineering 55

3.7.2 Decision Models of Software Processes.. 56

3.7.3 Imperfect Information in Design Processes... 56

3.8 Discussion ... 57

3.9 Conclusions .. 58

Chapter 4 - Specification and Evaluation of Imperfect
 Quality Requirements and Estimations 59

4.1 Introduction ... 59

4.2 Quality-based Design Alternative Selection...................................... 60
4.2.1 Problem Statement... 60

4.2.2 The Design Tree Model ... 61

4.2.3 Quality-based Evaluation of Design Alternatives ... 63

4.2.4 Configurable Design Strategies for Design Trees ... 65

4.2.5 Example Case: Remote Water Sensor ... 68

Table of Contents

III

4.2.6 Design Decisions for the Remote Water Sensor.. 69

4.2.7 Design Tree of the Design Decisions for the Remote Water Sensor 73

4.3 A Model for Imperfect Requirements and Estimations................... 73
4.3.1 Crisp Specifications of Quality Requirements and Estimations........................ 73

4.3.2 Imperfection Models for Quality Requirements.. 74

4.3.3 Imperfection Models for Quality Estimations ... 76

4.4 Comparison Operators for Requirements and Estimations............ 77
4.4.1 Introduction ... 77

4.4.2 Comparison Operators for Crisp Requirements .. 78

4.4.3 Comparison Operators for Imprecise Requirements ... 79

4.4.4 Comparison Operators for Uncertain Requirements ... 82

4.5 Case Study: Storm Surge Barrier .. 83
4.5.1 Selection of Alternatives with Uncertainty in Quality Estimations 84

4.5.2 Selection of alternatives with Impreciseness in Quality Requirements and

 Uncertainty in Quality Estimations ... 87

4.6 Related Work ... 91
4.6.1 Traceability of Design Decisions in Software Engineering 91

4.6.2 Modeling Imperfect Information in Design Processes 92

4.7 Discussion ... 93

4.8 Conclusions .. 94

Chapter 5 - Software Project Management with
 Probabilistic Market Demands....................... 97

5.1 Introduction ... 97

5.2 Resource Scheduling Problems due to Uncertain
 Market Demands ... 98

5.2.1 Introduction ... 98

5.2.2 Scheduling Software Development Processes... 98

5.3 Optimized Allocation of Resources.. 99
5.3.1 Introduction ... 99

5.3.2 Modeling Uncertain Market Demands using Scenarios 100

5.3.3 Modeling Allocation Strategies using Sequential Allocation.......................... 102

5.3.4 Integration of the Decision Graph and Scenario Graph for Resource

 Allocation Optimization... 104

5.4 Case Study: The Insurance Products Framework 107
5.4.1 The Insurance Products Framework .. 107

5.4.2 Modeling the Market Demands and Production Plans 108

5.4.3 Determining the Scheduling Advice...110

5.4.4 Relevance and Validity of Scheduling Advice ...111

Imperfect Information in Software Design Processes

IV

5.5 Related Work ..112
5.5.1 Software process configuration management...112

5.5.2 Requirements Engineering ...112

5.5.3 Optimization Models ..113

5.6 Discussion ..113

5.7 Conclusions ...114

Chapter 6 - Tool Support for Imperfect Information117

6.1 Introduction ..117

6.2 The SPOT Toolset...118
6.2.1 The Artifact Tracer Tool ...118

6.2.2 Decision Tracer Tool ... 122

6.2.3 Resource Allocation Optimizer ... 127

6.3 Implementation Issues and Points of Interest................................. 132

6.4 Conclusions .. 133

Chapter 7 - Evaluation and Conclusions 135

7.1 Introduction ... 135

7.2 Validity and Applicability of our Approach.................................... 136
7.2.1 Introduction ... 136

7.2.2 Goal and Setup of the Pilot Study ... 136

7.2.3 Examples for the Pilot Study ... 138

7.3 Results of the Pilot Study .. 140
7.3.1 Introduction ... 140

7.3.2 Imperfect Information Models in the Pilot Study Setting 141

7.3.3 Pilot Study Evaluation ... 144

7.3.4 Starting Point for Empirical Validation of Imperfection Models 146

7.4 The Problem of Imperfection in Software Design Processes 147

7.5 Resolving Imperfect Functional Requirements and Trade-off 148

7.6 Supporting Imperfection in Quality Evaluations 149

7.7 Project Scheduling under Probabilistic Market Demands............ 150

7.8 Discussion ... 151

7.9 Reflection and Future Work... 153

Table of Contents

V

References... 155

Appendix A - Refinement Steps of the TMS 167

A.1 Artifact Refinement for Crisp Requirements 167

A.2 Artifact Refinement for Fuzzy Requirements................................ 169

Appendix B - Derivation of the Comparison Operators 175

B.1 Derivation of the Comparison Operator for Fuzzy Sets 175

B.2 Comparison Operators for Crisp Requirements 178

Samenvatting .. 181

Imperfect Information in Software Design Processes

VI

Acknowledgements

VII

Chapter 0ACKNOWLEDGEMENTS

During secondary education, most dutch children of my age have taken a “Algemene Oriën-
tatie Beroepskeuze“-test. This test assesses and evaluates which professions are possible and
lie within the area of interest of each child. While I distinctly recall thinking the results of the
test not to be too interesting and relevant, I had forgotten the actual results of the test. How-
ever, when I recently stumbled upon the report of the test, I was amazed to see it stated that I
had a distinct preference for scientific research activities in a technical and theoretical area.
Little did the people who devised the test, and even less so me, know that some 15 years later I
would be writing the acknowledgements of my Ph.D. thesis on a plane back from a conference
in Norway. Looking back, I can only say that while not every step was planned to achieve this
goal, I am convinced this is the best choice I could have made. The people I have met, the
places I have seen and, perhaps most importantly, the things I have learned have made this
period an incredible experience.

The possibility to pursue a Ph.D. was offered to me by Mehmet Aksit and I am tremendously
grateful for this chance. Over the years, I have gotten to know Mehmet as an inspired
researcher, always full of ideas and always more than willing to discuss research-related as
well as non-research related topics. Mehmet’s guidance was always aimed at challenging your-
self and becoming more than you are, a state of mind I hope to keep in the future. My other
major influence during this period is my daily supervisor, Pim van den Broek. With his back-
ground in physics, I always tend to see Pim as a proper scientist. He taught me to always be
very meticulous about the steps I am taking in my research, and I admire his persistence in
finding the right formulas and specifying them correctly. His door was always open for a short
discussion on research as well as mutual interests such sports or even quantum mechanics. I
feel that the supervision provided by Mehmet and Pim was a very potent mix, and our cooper-
ation stretched beyond the boundaries of our research, as was underlined when we visited the
workshop on the origin of the universe out of general interest. I sincerely hope in the future this
will remain.

I would like to thank my committee members, Ed Brinksma, Paul Clements, Anthony Finkel-
stein, Witold Pedrycz, Awais Rashid and Arend Rensink for participating in the committee. I
very much value the effort taken to read the concept version and provide feedback for its
improvement. I am honored that you have allocated time and traveled long distances to partic-
ipate in my defense. I would also like to thank my colleagues of the fifth floor and some from
other floors (in no particular order): Lodewijk, Klaas, Boris, Celim, Ali, Marcos, Piotr, Axel,
André, Tom, Pascal, Wilke, Gurcan, Theo, Rom, Wouter, Hicham, Iovka, Val, Tomas, Dino,
Rik, Patrick, Pablo, Henrik, Suzana, and Arda. You have created an inspiring research environ-
ment as well as a very friendly atmosphere. There was always great willingness for discussions
on a plethora of topics, with the relevance rapidly dropping off during the notorious BOCOM,
every Friday at five o‘clock.

I am very thankful to our secretaries, Ellen and Joke. I am convinced that for any research
group, the secretaries are the most important people next to obviously the professor. Ellen and
Joke have made this clear to me by always helping me out on any subject for which I required
assistance. You have always been there for the serious as well as the no-so-serious time. Then,
there are a number of people that had to endure me on a frequent basis: thanks to Harmen for
the fitness, Mariëlle and Laura for the bbq-organizing fun, Anne for the talks over coffee, Ivan
for the guidance during the writing process, Georgios for the BOCOM and dodgy pub crawls
and Arend for all the crazy events such as a 13-hour Star Wars marathon.

In these acknowledgements I reserve a special place for my roommates over the years, Bedir,
Christian, Hasan, Ismenia, Istvan and Machiel. You have had the worst of me over the years,
since you had to cope with a noisy colleague every day. We have had so many nice discus-

Imperfect Information in Software Design Processes

VIII

sions, shared so many jokes and have done so many fun things that you all have become spe-
cial to me. You have made it easy for me to go to work and sometimes difficult to go home. I
am positive we will stay in touch in the future, in one way or the other.

I am also thankful for all the support I have received from my friends. I would like to mention
in particular Eelco, Jeroen and Joost for the fun, beer drinking nights and excursions to the
Oktoberfest. There are more stories there than the world could handle. I would like to thank
Luitzen and Tom for their ever present enthusiasm and support. In the end, you both have
beaten me in the completion of our respective work. I also want to thank Lotte for all the sup-
port over the years. You have been there during the good and the bad times, and in addition
you have designed the beautiful cover of the thesis. I am proud you agreed to be one of my
paranimphs. Also I would like to thank Dennis, Frank and Mark for the technical discussions
and fun during the dreaded “ISpec“ meetings. I sincerely hope we never start a foundation
again. And I would like to thank Marina and Sander for being such good friends. Your constant
interest and support is very much appreciated and I have so much enjoyed all the things we did
over the years, from birthdays and moving to refereeing at the European championship and the
Enschede Open. I am sure there is much more to come.

Finally, I would like to thank my family for their never-ending support and interest, even while
the topic of my research was perhaps too technical for most. I would like to express special
thanks to Rieneke, Jay and Brechje, for being there for me during all these years. For all the
fun and laughs during the holidays and other times, and also for the confidence you had in me.
And last, but certainly not least, I would like to thank my father and mother. You have always
supported me in my choices and believed in me in times of doubt. You have given me the
opportunity, preparation, confidence and tools to complete this work, and for this I consider
myself very lucky. I am so pleased we can all celebrate the completion of this work together.

All in all, I will use a single sentence in my regional dialect, Twents, to express my thanks to
everyone who has helped me over the years: Leu, onmeunig bedankt!!

Abstract

IX

Chapter 0ABSTRACT

The process of designing high-quality software systems is one of the major issues in software
engineering research. Over the years, this has resulted in numerous design methods, each with
specific qualities and drawbacks. For example, the Rational Unified Process is a comprehen-
sive design process, which is proposed to support the major phases in the software engineering
life-cycle. Agile processes, like for instance Extreme Programming, aim at flexibility, since the
design steps are not defined rigidly. Although the current software methods have largely
proven their applicability and there exists a plethora of different design processes to be used,
the current methods naturally suffer from the existence of imperfect information.

Imperfection during software design is the occurrence of information, which is uncertain or
incomplete to a certain degree. This can have many different causes, such as for instance
incomplete information sources or an imprecise view of what the system should do. The exist-
ence of imperfection makes the design processes difficult to apply, since such information typ-
ically has one or more elements that are ambiguous in their interpretation. When a system is
designed by using only one of the possible interpretations, there is a risk that the interpretation
turns out to be wrong in due time. This can lead to redesigning the system, and consequently to
very high costs.

Unfortunately, current design methods neglect the existence of imperfect information. For
example, modern software design processes explicitly require crisp and, preferably, complete
requirement specifications, although it is generally acknowledged that this is difficult to
accomplish. Similarly, imperfect information during design activities is also commonly
neglected. However, imperfection is an inherent problem of almost every design process as
well. Rather than trying to model the imperfection that inevitably exists, imperfection is gener-
ally neglected by making explicit and crisp assumptions, which may eventually result in wrong
design decisions. The impact of neglecting imperfection in requirement specifications or
design activities is higher in the early phases of software development. As the design process
progresses, both the software engineers and the stakeholders may come to have new insights
about what the system is supposed to do and which steps are to be taken. Because this informa-
tion only becomes gradually available along with the design process, in the early phases it is
not possible to transform imperfect information into a perfect one.

In this thesis, we identify the problems in the two areas in which imperfect information can
manifest itself, namely in contextual information (predominantly requirement specifications)
and in software design activities. We analyze the types of imperfection, and the way in which
the imperfection should be interpreted. Based on this analysis, we propose generic extensions
to software design processes for modeling imperfect information. By this way, different inter-
pretations of a design choice may be captured and considered according to their appropriate-
ness without committing to one of them too early. By modeling alternative interpretations of a
design choice, the design becomes more flexible. This is because the new insights which are
gained during the software development process can be taken into account in the decision pro-
cess more conveniently, without a need to redesign the system.

In our proposed method we have combined the techniques used in various disciplines such as
software architecture design, probability theory and fuzzy set theory, to ensure that we capture
the relevant properties of both the software engineering process as well as the nature of the
imperfect information. For a real-world application our approach can become very labor-inten-
sive. In order to aid the software engineer, tooling support is considered essential. For this pur-
pose the proposed methods have been implemented in a prototype. The tools relieve the user
from the mathematical computation and optimization effort, and ensure that the user only has
to focus on providing the relevant input. The effectiveness and ease of use of the tools are eval-
uated by means of a pilot study.

Imperfect Information in Software Design Processes

X

Chapter 1: Introduction

1

C H A P T E R

Chapter 0INTRODUCTION

1.1 Introduction
Nowadays, there exists consensus among the software engineering community that designing
even a medium size software system is a complex task [Lethbridge2005] [Pfleeger1998]
[Pressman1997]. There are many causes for this, such as inherent complexity of the problems
to be solved, ambiguous and evolving requirements, difficulty of taking the right design deci-
sion at the right time, and so on. Although there may be also specific reasons why software
design projects do not accomplish their original goals, coping with imperfect information is a
common problem of all projects and possibly the origin of many practical failures. Despite its
importance, the imperfect information problem has not been studied in the software engineer-
ing literature satisfactorily. In this chapter, we introduce the problem of imperfect information
in software engineering and we define a generic approach to resolve this problem.

“I am a theater of processes, he told himself. I am a prey to
the imperfect vision, to the race consciousness and its terri-
ble purpose.”

- From Frank Herbert’s Dune [Herbert2005]

Imperfect Information in Software Design Processes

2

1.2 Problem Statement
In this thesis we focus on an important problem during software development: the existence of
imperfect information in design processes. The difficulty of defining or attaining unambiguous
information at the time it is needed, can be encountered in many stages of software develop-
ment. In addition, the consequences for software systems and design processes can range from
considerable refactoring to complete redesign, in the case that imperfect information is not rec-
ognized and considered accordingly.

The design of software systems is a very complex activity, which requires a considerable
amount of information to be done effectively. Ideally, the required information must be of per-
fect quality, i.e. clear and accurate, since it will be used in decisions that determine the design
of the system. However, in practice it has proven to be very difficult to define or attain accurate
information when it is required. As a result, the design activities generally are performed with
descriptions that only partially provide the information with the desired quality. The usefulness
of information can therefore be limited as a result of ambiguities, incompleteness and vague-
ness among others. We refer to such information as imperfect information.

An imperfect description of what is expected from a software system is fairly common during
software design. In the case that the variability of the context in which the system will be used
is known, the design can be fitted with mechanisms to handle the variability. For example,
most modern web browsers accommodate a plug-in mechanism to facilitate the various media
standards that are available in the market. However, this approach can only be used when the
extent to which a particular system part can vary is known. If this is not the case, the variability
can turn out to stretch beyond the capabilities of the implemented mechanisms. As a result, for
software development it is important that the requirement specification accurately describes
the expected behavior and capabilities of the software system to be designed.

Most software development methods acknowledge the difficulty of defining requirement spec-
ifications with desired quality, and indicate advice to minimize the consequences of imperfect
information. Generally, it is advised to specify requirements of the software system as precise
and complete as possible. However, the failure of the waterfall model as a practical develop-
ment method has demonstrated that this it is very difficult to come to such specifications. In
response to this failure, software development methods were extended with refinement cycles,
an approach that allowed software engineers to revisit and adjust designs in an iterative man-
ner. Nowadays, most modern software design processes, such as Rational Unified Process
[Jacobson1999], incorporate iterative mechanisms. Agile processes, such as Extreme Program-
ming [Poppendieck2003], have made the iterative cycle an integral part of their software
development process.

However, the negative consequences of dealing with imperfect information are still noticeable,
even in iterative methods. Requirements generally include assumptions, which can not be pre-
cisely verified at the time of their definition. For example, there may be requirements derived
from market estimations, user expectance and satisfaction, etcetera. We term this as imperfect
requirements; requirements that are affected by imperfect information. Obviously, require-
ments have direct impact on the designs that are defined at the subsequent phases. Quite natu-
rally, imperfect requirements may result in imperfect designs. If during the design step the
software engineer happens to obtain more information on the assumptions that he previously
had to make, he may iterate to adjust the original requirement and carry out the design steps
again. In the ideal case, this may eliminate the problems created by imperfect information.
However, in practice it is likely that this can not be accomplished for the following reasons:

1 For a non-trivial system, it is considered unrealistic to assume that imperfect information
as a whole can become perfect at the same design moment.

2 For a non-trivial system, it is considered unrealistic to assume that requirements are
frozen and will not change.

Chapter 1: Introduction

3

3 The corrective action may have undesired side-effects.

4 There are generally time and financial restrictions that constrain the number of iterations
in design.

Moreover, imperfect information is not limited to the definition of requirement specifications.
During the design process, the software engineer makes assumptions on the result of the design
process. Typical assumptions are made on for example performance, adaptability or user satis-
faction. When the design is mature, the validity of these assumptions can be assessed. If the
system is not satisfactory at this moment, the design process can be partially repeated. In the
ideal case, this will eliminate the problems caused by wrong assumptions on the final design.
However, this is difficult to accomplish, because:

1 The corrective action is also likely to be based on some assumptions on the result of the
design process.

2 It is likely that new requirements will be imposed during the design, which are expected
to be influenced by imperfect information.

3 The corrective action may have undesired side-effects.

4 There are generally time and financial restrictions that constrain the number of iterations
in design.

We conclude that imperfection is an inherent property of the information used during software
development, even when it is not always recognized as such. In the previous paragraphs, we
have identified four problems for resolving imperfect requirements. These four problems apply
equally to resolving other imperfect information during software development. From the prob-
lems we have identified, it can be seen that the success of iterative design with respect to cor-
recting the consequences of imperfect information depends on whether the following four
requirements are fulfilled:

All-Isolation Requirement: For the design to be corrected effectively with iterative design,
all concerns must be orthogonal; otherwise concerns that are influenced by imperfect
information cannot be isolated and made perfect eventually.

All-Always Requirement: For the design to be corrected effectively with iterative design,
all requirements must be frozen; All requirements must always stay the same.

All-at-Once Requirement: For the design to be corrected effectively with iterative design,
all unknowns of a dependent design part must be resolved at the same time, otherwise there
will be always some influence of imperfect information

All-Infinite Requirement: For the design to be corrected effectively with iterative design,
all the required resources must be infinitely available, otherwise iterations cannot be applied
until the imperfections are resolved.

Naturally, these requirements will not be fulfilled in a realistic setting, which means design
processes can not rely only on iteration to ensure the timely delivery of systems with accept-
able quality. While imperfection is not necessarily problematic during software design, devel-
opment methods need to become aware of the imperfection that exists in information that is
used. In addition, development methods need to understand the nature of the imperfection,
such as conflict, ambiguity or tolerance, since this directly influences the way in which the
information should be used.

1.3 Approach
To understand the problems caused by imperfect information in software development meth-
ods, we study the nature of imperfection as well as sources and locations from which imperfect

Imperfect Information in Software Design Processes

4

information originates. We propose to explicitly model and consider imperfection during soft-
ware development activities. We define models that capture the relevant properties based on
the character of the imperfection, which are based on probability theory and fuzzy set theory.

We study the way in which design activities must be extended to make software development
methods capable of working with information that contains imperfection models. To facilitate
the compatibility with modern software design processes, we propose three reasoning
approaches, that can evaluate imperfect information in a similar manner to perfect information:
the design tree model, the artifact trace model and the resource allocation model. The mathe-
matical basis underlying these models ensures the evaluation of imperfect information is per-
formed in accordance with the models that are used to capture it.

To be able to perform software development activities uniformly and correctly, we study the
common operations that are (implicitly) performed during the course of a software develop-
ment process. We propose extensions to these common operations to ensure the uniform treat-
ment of both perfect and imperfect information, without losing the added value of imperfection
models during software development. In addition, we use the extra information in the imper-
fection models and the tracing models to provide feedback to the development process on how
to proceed with incremental steps of the design.

Finally, to explore and evaluate the applicability of the techniques we propose, we perform a
pilot study based on the example cases described in this thesis. This is done by use of a toolset
that implements both the imperfection models and the optimization models that have been pro-
posed. The novelty of the approach lies in the possibility to model and analyze information that
does not contain the level of detail that is desirable. By including the nature of the imperfection
in the decisions that are taken, the risk of not having the desired information can be assessed
and the development process can be adjusted to minimize the risk.

1.4 Contributions
In this thesis we describe the following contributions:

1. The concept of fuzzy functional requirements that enables the inclusion of alternative
requirement interpretations in software design processes.

Chapter 3 identifies the danger of committing to a single interpretation when a software engi-
neer is faced with imperfect functional requirements. An extension of crisp functional require-
ments is proposed, which the inclusion of alternative interpretations by means of fuzzy sets.
The extension enables the inclusion multiple interpretations of a single imperfect requirement,
and addresses these interpretations as normal requirements in the development process. The
fuzzy requirement concept is combined with the Artifact Trace Model to support the analysis
of the resulting design based on different trade-offs, such as cost minimization or relevance
maximization.

2. An extension to numerical expressions in quality requirements and estimations that enables
the specification and evaluation of imperfect information in design decisions.

Chapter 4 presents an approach for specifying numerical expressions in quality requirements
and quality estimations that are subject to imperfection, by means of probability distributions
and fuzzy sets. This approach overcomes the inability of current methods to capture imperfec-
tion in such numerical expressions, which enables the software engineer to model for example
tolerance in quality requirements and partial knowledge on the expected behavior of the com-
pleted system. The approach is completed with the definition of comparison operators that are
needed to evaluate imperfect estimations with imperfect requirements. Combined with the

Chapter 1: Introduction

5

Design Tree Model, the approach forms a decision support model for design decisions with
support for imperfect information.

3. Reasoning and optimization models that ensure the proper usage of the proposed imperfec-
tion models and explore the added possibilities that are offered by the imperfection.

In chapters 3 and 4, two tracing approaches are presented that are used to provide decision sup-
port for the software engineer during the software development process. The first model traces
functional requirements to their respective components. In addition, it provides optimization
operations that enable the software engineer to make trade-offs between the provided function-
ality and particular stakeholder interests. The second model captures the sequence of the
design decisions that have been taken, and the alternatives that have been considered. By
means of configurable design strategies, the software engineer is provided with advice on how
to continue the software development process.

4. An optimization model for scheduling the implementation order of an application frame-
work and product line components with respect to probabilistic changes in market demands.

Chapter 5 motivates the explicit consideration of probabilistic changes in market demands dur-
ing scheduling of implementation activities in software design processes. A graph-based tech-
nique is defined for modeling both the possible market demand scenarios that can occur and
the production plans that are considered during the development period. This technique pro-
vides the software project manager with scheduling advice based on the current workstate and
the events that have occurred. Additionally, the project manager is provided with the possibil-
ity to explore worst-case situations and “what-if“ scenarios as a means to understand the risks
posed by the imperfect market demand expectations.

1.5 Outline of the Thesis
The map of the thesis with the chapters and relations among them is depicted in Figure 1.1.

Imperfect Information in Software Design Processes

6

The thesis consists of the following chapters:

Chapter 2 introduces the background knowledge and the definitions that will be used in this
thesis. It describes the core concepts of probability theory, fuzzy set theory and fuzzy probabil-
ity theory, which are used to capture and reason with imperfect information within the soft-
ware development process, as defined in chapters 3 and 4. Additionally, it gives a short
introduction into the optimization theory underlying the decision support models defined in
chapters 3, 4 and 5.

Chapter 3 describes the Artifact Trace Model, which is used for tracing functional require-
ments to the components that fulfil them. The resulting artifact trace is used to trade-off system
functionality and stakeholder interests. The chapter also introduces the concept of fuzzy func-
tional requirements into the Artifact Trace Model. Fuzzy functional requirements are presented
as an extension to crisp requirements that facilitate the introduction of alternative interpreta-
tions of imperfect specifications into the software design process. Within the Artifact Trace
Model the alternative interpretations are treated as normal requirements, which means the soft-
ware engineer is not hampered by the imperfect requirements. The Artifact Trace Model can
be used as a means to derive multiple system designs based on particular stakeholder interests,
such as relevance of urgency. This chapter is a revised version of the work described in
[Noppen2004] and [Noppen2007].

Chapter 4 introduces the Design Tree Model, which captures design decisions that are taken
during the software development process. In a design tree a trace is made of the decision, the
contemplated solutions and their expected quality. By means of configurable design strategies,
the resulting tree structure is used to steer the design process based on quality evaluations.

Chapter 2

Definitions &

Background

Chapter 3

Imperfection in

Functional Requirements

Chapter 4

Imperfection in Quality

Requirements and Estimations

Chapter 5

Imperfection in Software

Project Scheduling

Chapter 7

Conclusions &

Pilot Study

Used in

Chapter 6

Tool Support for

Imperfect Information

Implemented in Evaluated in

Evaluated in

Figure 1.1 Thesis Map

Chapter 1: Introduction

7

Subsequently, the chapter extends the expressiveness of quality requirements and quality esti-
mations with definitions for probabilistic, fuzzy and fuzzy probabilistic requirements and esti-
mations. With these extensions, a number of imperfection types are described, such as
tolerance and variance. To facilitate the use of these imperfection models, this chapter defines
comparison operators for the evaluation of imperfect quality requirements and imperfect qual-
ity estimations in a uniform manner. The extensions are integrated into the design tree model
to enable design decision support, while dealing with imperfect information. The work
described in this chapter is a revision of the work in [Noppen2007a], [Noppen2005] and
[Noppen2005a].

Chapter 5 proposes a resource allocation approach for the implementation of components and
assets of application frameworks and product lines under uncertain market demands. Graph-
based models are proposed to describe the demands scenarios that can occur during the course
of the software project and to describe the allocation strategies that are considered. The
approach results in conditional scheduling advice, which returns the optimal resource alloca-
tion schedule based on the current demand and the work that has been completed. This chapter
is an extension of the work described in [Noppen2004a].

Chapter 6 introduces a of set of tools, which have been implemented to support the applica-
tion of our approach within software design processes. The toolset offers decision support for
resource allocation, trade-off analysis and design decisions with full support for imperfect
information as described in chapters 3, 4 and 5. This chapter describes the architectural design
and user interface of the toolset, and it explores a number of points of interest with respect to
its implementation.

Chapter 7 gives conclusions and an evaluation of the contributions in this thesis In addition,
this chapter describes a pilot study that has been performed to assess the applicability of the
approach and the toolset within a controlled setting. Early insights on the usefulness of our
approach are given based on the results of this pilot study, as well as an outline with points of
interest for experimental validation of the proposed models.

Imperfect Information in Software Design Processes

8

Chapter 2: Definitions and Background

9

C H A P T E R

Chapter 0DEFINITIONS AND BACKGROUND

2.1 Introduction
In this chapter, we give an overview of the basic concepts used in this thesis. We aim at select-
ing a consistent set of definitions and background information that supports the understanding
of the subsequent chapters. We introduce the notion of imperfect information and we examine
the support for imperfect information in state-of-the-art design processes, such as the Rational
Unified Process [Kroll2003] [Kruchten1999] and Agile Processes [Martin2003]
[Poppendieck2003]. Based on this analysis, we classify imperfect information into a number of
types and we introduce the core concepts of probability theory, fuzzy set theory, fuzzy proba-
bility theory and optimization theory, which are used in this thesis to facilitate the description
of imperfect information in software development processes.

The chapter is structured as follows. Section 2.2 introduces the concept of imperfect informa-
tion and in Section 2.3 we analyze the capabilities of a number of well-known design processes
with respect to supporting imperfect information during software development. In section 2.4,
we distinguish a number of imperfect information types in the field of software engineering.
The core concepts of the mathematical models we use to capture imperfect information, such
as probability theory and fuzzy set theory, are described in section 2.5. In section 2.6, we give
an overview of decision support systems, which are used in this thesis to support reasoning
with imperfect information. In particular, we explore the core concepts of decision support sys-
tems based on optimization theory. An overview on existing approaches for supporting imper-
fect information is given in section 2.7 and the chapter is concluded in section 2.8.

“Arrakis teaches the attitude of the knife--chopping off
what's incomplete and saying: "Now, it's complete because
it's ended here.”

- From Frank Herbert’s Dune [Herbert2005]

Imperfect Information in Software Design Processes

10

2.2 Imperfect Information in Software Design Processes

2.2.1 Introduction

In every day life, almost all the information we encounter is imperfect. Generally, the absence
of perfection in the information we receive does not limit us in performing most of our tasks.
However, when the complexity of the task to be performed increases the influence of the
imperfection becomes difficult to understand and manage. As a result, imperfect information
can severely hamper very complex activities, such as developing a software system. In the
field of software engineering, imperfection is not yet accepted as a natural state for available
information. Nevertheless, software engineers frequently encounter information during the
software design process that contains imperfection. Among others, software engineers can
encounter:

• ambiguous requirement specifications;

• stakeholders with conflicting interests;

• incomplete descriptions of the desired functionality;

• changing requirement specifications;

• tolerance with respect to project delays and budgets;

• changes in the demand for products;

• uncertain expectations of software quality;

• required information that is missing

The occurrence of imperfect information in software design processes generally results from
the fact that information is needed at a time at which it is not (yet) available. For example, soft-
ware engineers may be forced to decompose a system into a certain modular structure to man-
age complexity, already in the early phase of software development. In practice, it may be
preferable to defer this decision to a later phase, when the interactions among components are
known. This allows grouping of densely interacting components into the same module, for the
purpose of improving performance and cohesion. However, given the fact that the decomposi-
tion must be performed early in the design process, the software engineer will only have an
imperfect view of the interactions between components. Software engineers and stakeholders
therefore frequently encounter imperfect information, but they are seldom given effective tools
to retain the oversight and minimize its impact on the software development process. Nonethe-
less, software engineers have to deal with the imperfection, especially in the early phases of
software development.

During the last 30 years, a considerable number of design methods have been introduced, such
as Structural design [Yourdon1979] and Rational Unified Process [Jacobson1999]. These
approaches generally differ from each other with respect to the adopted models (functional,
data-oriented, object-oriented, etc.). The methods propose a process which is guided by a large
set of explicit and implicit heuristics rules. A method may distinguish itself from the others by
introducing and emphasizing its own design heuristics. In [Tekinerdogan2002], based on their
heuristics, architecture design methods are classified as artifact-driven, use-case-driven and
domain-driven.

All software development processes acknowledge the difficulty of defining concise and suffi-
ciently accurate requirement specifications, and offer their own approach to ensure the quality
of the resulting software system. Through iteration and heuristics the software engineer is
enabled to assess and adjust the software under design, which is structured depending on the
type of system that is being designed. Most environments provide model editing, consistency
checking, version management and code generation facilities. Incremental design is typically

Chapter 2: Definitions and Background

11

well-suited to address changes in requirements, which can for instance result from information
that is incomplete at the start of the development process. However, as has been identified in
chapter 1, for successful corrective design steps through iteration, requirements must be ful-
filled that can not be satisfied in a realistic setting. Therefore both the imperfection that is
present in design inputs as the triggers to start a design increment should be better understood.
Despite a considerable amount of research on process modeling [Kaiser1994]
[Finkelstein1994], only a few environments provide a process support that explicitly considers
imperfection that is present in the process inputs. Rather, this problem is left to be adjusted by
iteration and the experience of software engineers. Formalizing design heuristics and provid-
ing some sort of expert system support during the design process is not exploited well. In this
section, we examine four software development methods, to evaluate their approach for deal-
ing with imperfect information. First we take a look at the waterfall model, which essentially
was defined to demonstrate the impact of imperfect information on sequential software design.
Next we examine Rational Unified Process and Agile Processes as examples of a complete and
an agile development process respectively. We look at Synbad as an example of synthesis-
analysis based software development approaches and the Architecture Trade-off Analysis
Method as an evaluation method at the architectural level of software design.

2.2.2 The Waterfall Model

One of the most well-known, and criticized, process models for software development is the
waterfall model, introduced by Royce [Royce1970]. In this model, the software development
process is divided into a sequence of discrete phases. Schematically, the waterfall model is
depicted as follows:

The phases depicted in Figure 2.1 are performed in the waterfall model in a pure sequential
manner, which means that it is not possible to revisit previous phases after they have been
completed. Obviously, such a rigid sequence of defined states only results in software of high
quality, when the initial requirement specification accurately captures the desires of the stake-
holders. In the case that the requirement specification fails to achieve this, and this is not
noticed until later in the design process, software engineers are forced to start from the begin-
ning. The influence of imperfect information on the waterfall model is therefore prevalent,
especially since the occurrence of imperfection in subsequent phases can lead to invalidation
of the software design, in a manner identical to imperfect requirement specifications.

In response to the obvious disadvantages of the waterfall model, the concept of iterative design
was introduced. In this approach, design is done by means of a cyclic process of prototyping,

Requirements

Design

Implementation

Verification

Maintenance

Figure 2.1 The Waterfall Model

Imperfect Information in Software Design Processes

12

testing, analyzing and refining. Iterative design is better suited to work with imperfect inputs,
since it enables software designers to adjust designs and decisions during new iterations of the
development process. In typical models such as the spiral model [Boehm1986], these iterations
were envisioned to last for a period of six months to a year. However, recently agile processes
have shortened the time between iterations considerably.

2.2.3 Rational Unified Process

The Rational Unified Process (RUP) [Jacobson1999] is a complete and well-defined software
development method, which has gained considerable popularity in recent years. It is defined to
be a customizable framework, which makes it adaptable to specific companies and settings.
The RUP is frequently described as being iterative, architecture-centric and use-case-driven,
which means that the RUP supports iterative development while using use-cases as its primary
input. In Figure 2.2 the iterative character of the RUP is depicted as it is described in
[Kroll2003].

In this figure, the software development process is initiated by modeling the business informa-
tion, after which the final product is built in a number of increments. Each iteration step builds
on the results of the previous iteration, in which new insights and adjustments can be consid-
ered. This iterative character is maintained throughout the four phases of the RUP, being
inception, elaboration, construction and transition. A schematic depiction that is commonly
used to characterize the RUP, is depicted in Figure 2.3.

Business

Modeling

Initial

Planning

Planning

Requirements

Analysis & Design

Implementation

Test

Evaluation Deployment

Configuration

& Change

Management

Environment

Figure 2.2 Iteration in the Rational Unified Process

Chapter 2: Definitions and Background

13

In this figure, the RUP is described by two dimensions, the organization along time describes
the consecutive stages the development process will pass through. During each of these phases,
effort is allocated in a specific manner to the workflows, which are depicted in the organiza-
tion along content. Along the development process, in each phase multiple iterations are done
along the workflows, which eventually result in the final product. The reason why the RUP
emphasizes iteration during software development is that it resolves particular problems that
were found when using the classical waterfall process. In [Kroll2003] it is argued that iteration
facilitates the change of requirements, addressing risks, management insights and decisions
and design adjustment, amongst others.

The design steps in the RUP are taken by identifying analysis packages, classes and objects
based on the design heuristics of the process. For example, analysis packages are identified by
answering questions such as “which system concepts are needed for interfacing?“ or “which
system concepts represent information?“. These questions and heuristics are then resolved and
used from the perspective defined by the use-case descriptions of the system. As a result, the
development activities become very sensitive to these use-case specifications. Since typically
use-case descriptions only offer a very abstract and partial view of the system, it becomes dif-
ficult to use the heuristics in a uniform and straightforward manner. In addition, the heuristics-
based identification of analysis classes and packages remains vague. The imperfection that is
present in both the use-case descriptions as well as the heuristic design advice hampers the
development process, and therefore can lead to systems that do not fulfil the requirements.

The iterative nature of the RUP partially addresses these problems, since at the beginning of a
new iteration cycle the available information can be reassessed. By reconsidering and adjust-
ing earlier design decisions the functionality and quality can be adjusted. However, typically it
is very complex to perform systematic iteration in the software development process in the
way it is proposed by the RUP. Iterative cycles can only be properly managed after previous
iterations have been completed, and it is very difficult to perform design and reiteration in par-
allel. Naturally, the iterative approach of the RUP can only be fully successful when it fulfils

Business

modelling

Requirements

Analysis & Design

Implementation

Testing

Deployment

Elaboration Construction TransactionInception

Core Process Workflows

Organization along time

O
rg
a
n
iz
a
ti
o
n
a
lo
n
g
c
o
n
te
n
t

Config Change

Mgt.

Project Mgt.

Environment

Core Supporting Workflows

Figure 2.3 Schematic representation of the RUP

Imperfect Information in Software Design Processes

14

the requirements that have been defined in section 1.2. While these requirements in general can
not be fulfilled, the RUP is in particular vulnerable with respect to the All-Always-Require-
ment. Since the iterative cycle in the RUP takes a relatively long time, there is a high probabil-
ity that the requirements will have changed upon completion of the iteration. As a result, the
corrective step is invalidated and new iterative corrections must be performed.

2.2.4 Agile Software Development

In response to the very complex and detailed software development processes, agile processes
have gained increasing momentum over the last decade. Contrary to complex and detailed
development processes, agile development processes focus on short iteration cycles, which
typically last for two to four weeks. In each of these iterations, a mini-increment of the desired
functionality is achieved while including the feedback from the previous iterations. Agile
development processes are typified in [Poppendieck2003] by the following lean principles:

Eliminate waste. Anything that is present in the software development process, that is not
directly needed to fulfil the demands of the customer is considered waste. This can range
from unused requirement specifications to superfluous components in the software
architecture.

Amplify learning. Design should be seen as a learning process rather than a production
process. Insights on the right decisions are attained over multiple iterations as a result.
Therefore the development process should support learning facilities.

Decide as late as possible. To ensure that decisions are taken based on the best information,
postpone decision making to the latest possible moment. Especially in an uncertain
environment this enables the arrival of new relevant information, which can reduce errors.

Deliver as fast as possible. Where detailed processes typically try to avoid making errors,
and deliver the software “when it is good“, prototypes are delivered as fast as possible, since
agile processes see this as the only way to gather meaningful feedback. The shortened
iteration cycle is seen as one of the most important approaches in agile processes to reduce
waste.

Empower the team. Due to the very short cycles, the responsibility of the project
management shifts towards the individual workers. The success of the approach depends on
the agreement that small increments of the software system are delivered at regular
intervals, and is ensured by daily meetings, integration and testing.

Build integrity in. Integrity of the software system (how well it corresponds to the customer
desires) is monitored by making sure the central concepts cooperate as a cohesive whole. In
addition, it is aimed to keep the software meaningful over time.

See the whole. Finally, it is advocated to keep the necessity of the entire system in mind
while designing the software. A maximization of individual parts is not necessarily the best
overall architecture, which makes it important not to have too narrow a focus.

Iterations in agile processes take considerably less time than in detailed processes, which
means that they are more capable of adapting to changes in requirements. This implies that
agile processes are less vulnerable to the All-Always-Requirement, as defined in section 1.2.
Since the iterative cycle takes less time, it is less likely that requirements change during the
corrective steps. However, the shortened iteration cycle also makes it less likely for all the
imperfection to be removed at the same time, a restriction on successful iteration stipulated by
the All-At-Once-Requirement. As a result, the corrective steps are still based on imperfect
information, and therefore likely candidates for future iterations. In addition, one of the main
points of criticism on agile processes focuses on the lack of structure, the need for experienced
developers and added difficulty in contractual negotiations. It is plausible that agile processes
therefore are faced with imperfect information more frequently than detailed development pro-

Chapter 2: Definitions and Background

15

cesses. This means that the structure of agile processes in part is both the solution and the
cause of imperfect information.

2.2.5 Analysis-Synthesis

Analysis-synthesis is a relatively new approach to software design although in traditional engi-
neering it has been applied for a longer time. As a basic notion, analysis-synthesis sees soft-
ware development as a problem solving activity, much like it is done in traditional engineering
disciplines, such as the Synbad approach that is described in [Tekinerdogan2000]. In such a
view, the problems are presented by the requirement specification and the solution is formed
by the completed system. In the synthesis based approaches typically the problems are decom-
posed into smaller, more manageable subproblems. From here the problems are transformed
into the resulting software system in a finite number of steps. Based on the problem decompo-
sition, the relevant domains of expertise are identified (commonly named solution domains).
From these domains the solution concepts are extracted that make up the system design. Sche-
matically an analysis-synthesis process can be characterized as follows:

In Figure 2.4, the analysis-synthesis design process is depicted as a sequence of phases, num-
bered I, II, etcetera. These phases represent intermediate design models during the software
design process. The first phase leads to the definition of the requirements, which are denoted
by r1, r2,… in the figure. In the second phase, a decomposition of the requirements is made into
the relevant problems in order to fulfil the requirements that were found in phase I. These
problems are denoted p1, p2,… in the figure. The problems are mapped to solution domains in
the third phase, denoted by SD1, SD2,…. In the fourth phase, the solution concepts, denoted
Sol1, Sol2,… are selected from the solution domains to make up the final system.

After the completion of phase IV, two different iterations can be performed. The refinement
iteration is the refinement of each solution concept into smaller sub-concepts, that provide the
implementation at a lower level of abstraction. This is done by first defining requirements for
each solution concept, which are denoted by r’1, r’2,… in the figure at phase I’. These require-
ments are in turn mapped to problems at stage II’, denoted by p’1, p’2,…. In phase III’, the
problems are mapped to solution concepts, indicated by Sol’1, Sol’2,… in the figure. From
here, a new phase IV is reached, where new, lower-level solutions are identified. This iterative

r1, r2, … p1, p2, … SD1, SD2, …

I II III

Sol1, Sol2, …

r’1, r’2, …

p’1, p’2, …SD’1, SD’2, …

Evaluation

Error in Quality

balancep’’1, p’’2, …

SD’’1, SD’’2, …

Quality

Refinement

Quality

Balance

IV

I’

II’III’

V

VIII’’

III’’

Figure 2.4 The Synbad Design Process

Imperfect Information in Software Design Processes

16

cycle can be repeated until an implementable solution is found. The second iteration is the
quality balance iteration cycle. In this iteration, the expected quality of the current design is
assessed. In phase V, the current set of solution concepts is graded by making an evaluation of
the specific quality attributes such as stability, performance, etcetera. These characteristics are
compared to the quality requirements in phase VI. In the case that the design does not fulfil the
quality requirements, the problem areas are identified as errors in the quality balance. To
resolve these errors, a number of problems are identified in phase II’’, indicated by p’’1,
p’’2,… in the figure. These problems are mapped to solution domains in phase III’’, in the pic-
ture denoted by SD’’ 1, SD’’2,…. From the solution domains, solution concepts of higher qual-
ity are selected in phase IV, in order to increase the overall quality of the design. This iterative
cycle can be repeated until a solution of acceptable quality has been identified. After this, the
refinement cycle can be used to come to an implementation.

Analysis-synthesis-based development approaches have two mechanisms to address imperfec-
tion information, iteration and decomposition. Like other design processes, iteration can be
used to adjust software designs, but an explicit distinction is made between quality-based iter-
ation and refinement-based iteration. However, the difficulties originating from imperfect
information with respect to iteration equally apply to synthesis-based approaches. For the iter-
ative correction of the software design to be successful, the four requirements identified in sec-
tion 1.2 must be fulfilled. However, just as with other development processes, these
requirements are unrealistic for analysis-synthesis-based development methods. The second
mechanism is the explicit decomposition of problems in the early phases of the software design
process. By distinguishing multiple independent problem parts, the influence of imperfection
can be isolated. As a result, the impact can be minimized during the software development.
Nonetheless, decomposition suffers from imperfect information, since the decomposition itself
is based on the information available at this point in the design process. When this information
is subject to imperfection, the chosen decomposition can be invalidated at the later stages of
the design process, which has a severe impact on the design effort up to that point.

2.2.6 Architecture Trade-off Analysis Method

In the Architecture Trade-off Analysis Method (ATAM) [Barbacci1998], a method is pro-
posed for the systematic analysis of the expected quality attributes of software architectures.
This is done by defining a model for each relevant attribute and performing a scenario-based
analysis using these models. The results are compared to the requirements and server as a
means to understand the trade-off that exists between attributes. After the software architecture
has been described, ATAM consists of four steps:

1 Identify requirements, constraints and structural view of the architecture.

2 Define models for the relevant quality attributes.

3 Perform a scenario-based analysis using the attribute models.

4 Compare the results against the requirements and model the trade-off and sensitivity.

The activities that are performed in the ATAM are aimed at gaining insight into the quality of
software during the architectural design phases. The usage of explicit models for quality
attributes greatly increases this insight and can assist in the identification of, for example,
ambiguous requirements.

The Architecture Trade-Off Analysis Method is a logical continuation of the Software Archi-
tecture Analysis Method (SAAM), which is aimed at analyzing and understanding the capabil-
ities of a software architecture using usage scenarios. However, in SAAM the quality attributes
were not explicitly modeled, which makes the assessment qualitative rather than quantitative.
Over the years, many extensions have been proposed that enhance the evaluation capabilities
of the SAAM. For example, in [Molter1999] ESAAMI (Extending SAAM by Integration in

Chapter 2: Definitions and Background

17

the Domain) is presented, in which the SAAM is embedded in a domain-specific and reuse-
based development process. This facilitates the reuse of domain knowledge. As a result, the
evaluations become more accurate.

Scenario-based architecture analysis methods, such as the ATAM, assist the software engineer
in gaining an early insight in the quality attributes of the current system design. Nevertheless,
the validity of these insights heavily depends on how well the set of scenarios captures the con-
text in which the final system will be used. Most of these approaches are aware of the fact that
these scenarios form an imperfect description of this context, there is no support to express this
imperfection by, for instance, probability annotations for each scenario. While it is possible to
compare architectural alternatives in a uniform manner, these approaches do not describe the
degree to which the evaluation corresponds to the real world, a point which is addressed in
ATAM by explicitly modeling quality attributes. Nonetheless, the degree to which these mod-
els capture the actual attribute directly influences the evaluation. In addition, the evaluations of
the software architecture are compared to the quality requirements to determine the applicabil-
ity of the design for the stakeholders. As we have established in chapter 1, the necessity of
defining quality requirements early in the development process makes it difficult to specify
accurate and precise restrictions on the desired quality. The likeliness of mis-assessing the
expected quality of a software architecture therefore only increases, since the scenario-based
evaluation as well as the quality requirements are subject to imperfect information.

2.3 Types of Imperfect Information
In this thesis, our focus is on addressing imperfect information that occurs during software
development activities. In this specific field, imperfect information can come from two distinct
sources. The first source is formed by the stakeholder, or group of stakeholders. The functional
requirements and the quality requirements are specified in accordance with these stakeholders,
but this is a process that is notoriously difficult. As a result, requirement specifications are a
natural point at which imperfection information can enter the software development process.
The second source of imperfect information is formed by the software engineers that design
the software system. As with most non-trivial design activities, in software architecture design
it is difficult, if not impossible, to precisely indicate the quality of the resulting system during
the initial design decisions. While the software architects will have a “pretty good idea” on the
quality of the system that results from a particular decision, it can not be determined with cer-
tainty.

The models proposed in this thesis are intended to address imperfect information in a uniform
and well-defined manner, by specifically considering and supporting the nature and character-
istics of software development processes. To ensure a consistent understanding of the prob-
lems and solutions that are described, we introduce the following basic terms:

Perfect Information: Information that contains all the attributes and values with sufficient
precision and certainty for the purpose for which it is used.

Imperfect Information: Information that is not perfect.

Uncertain Information: Information that is imperfect, but will become certain at some
point in the future.

Imprecise Information: Information that is imperfect, and that will remain imperfect to a
certain degree.

For our models we distinguish between two types of imperfect information, impreciseness and
uncertainty. Although there are slight differences in the terminologies used in other fields, in
the large our definitions for these terms conform to the standard definitions in the literature,
such as [Bonissone1985] [Bosc1993] and [Parson1996]. Here, the term uncertainty refers to a

Imperfect Information in Software Design Processes

18

transient case, where imperfect information becomes eventually perfect (well known) in due
time. In contrast, imprecise information will always remain imperfect to some degree.

The distinction we make between types of imperfection closely corresponds to the types of
imperfection that can be encountered in the software development process. In the analysis of
the development processes in section 2.2, we have seen that imperfection can originate from
many sources and can be used to describe different aspects of what is not known. For example,
when an imperfect description is given of the maximum budget for a software project, this in
most cases indicates a certain tolerance with respect to the allowed costs. This type of imper-
fection closely corresponds to impreciseness. For impreciseness, it is important to have an
indication of the acceptable boundaries, but it is seldom necessary to precisely define the
amount of tolerance at any given point in time.

We have also seen that during software design frequently estimations are made of the expected
quality attributes of the resulting system. Due to an incomplete view of what the finished sys-
tem will look like, these estimations will also contain imperfection. However, this imperfec-
tion falls into the category of uncertainty, since the actual quality attribute values can be
determined upon completion of the software system. The same is also true for market expecta-
tions. While it can be unclear how the market will behave four weeks from now, this will
become clear when these four weeks have passed. In our view, it is important to include the
notion that uncertain information in due time can be falsified, since uncertain information
introduces risks into design processes. With these terms, we can classify the problems and
properties of our approach accurately. In the remainder of this thesis, we will use these terms
consistently.

It is important to note that there is a difference between information and the way in which it is
seen by the people that use it. Suppose a software engineer has to design a user interface based
on the assumption that all user are telepathic. Later, it turns out that only some of the users are
actually telepathic. The assumption of all users being telepathic clearly was imperfect. How-
ever, at the moment the user interface was designed, the designer had no reason to doubt the
information, and therefore assumed it to be perfect. In order to consider the imperfection that
exists in available information, the information needs to be identified as being imperfect. After
this, the type of imperfection must be identified and modeled. The telepathic users assumption
was clearly imperfect, and in this case uncertain since after a while it turned out that not all
users are telepathic.

2.4 Models for Imperfect Information

2.4.1 Introduction

In this thesis, we focus on mathematical representations of imperfect information by means of
probability theory, fuzzy set theory and fuzzy probability theory. These theories offer a solid
mathematical foundation for the specification and manipulation of imperfect information and
their diversity ensures sufficient flexibility to express the various types of imperfection. Fuzzy
set theory and probability are two models that can be used to describe imperfect information.
The actual imperfection is different for both models, which means that the character of fuzzy
sets and probability is orthogonal. The difference between probability theory and fuzzy set the-
ory can be illustrated with the following example.

The coach of a basketball team is looking for a new player. This player must be at least 2
metres tall. He is pointed to a player that might fit this requirement. What is now the
difference between a player that is probably 2 metres tall and a player that is approximately
2 metres tall? In the first case, the coach gets a player that is 2 metres tall with a high
probability, say 0.95. This means, that the coach will receive a random player from a group
of 20 players, from which 19 are at least 2 metres tall and one is definitely not. Therefore

Chapter 2: Definitions and Background

19

there is 5% chance the coach will get a player of unknown height but certainly smaller than
2 metres. In the second case, the 0.95 represents the membership value in the set of people
that are at least 2 metres tall. This number is attained by asking 20 experts whether a player
is 2 metres tall, without the possibility of actually measuring. From these 20 experts, only
one though the player is not 2 metres. Based on this number, the coach will receive a player
of which most experts think he is 2 metres tall, which means he will not be substantially
smaller. - (Example by Bart Kosko)

In [Klir1995], among others, the orthogonal character of probability theory and fuzzy set the-
ory is explained in more detail. In this section we explain the basic concepts of probability the-
ory, fuzzy set theory and fuzzy probability theory, which are used as the starting point for
imperfection models in the remainder of this thesis.

2.4.2 Probability Theory

Of all mathematical models that represent imperfect information, probability theory is the most
well-known. Probability theory is used to describe situations where the results of experiments,
when performed under identical circumstances yield different results, such as flipping a coin.
In this thesis, we use random variables with associated probability distributions to describe
imperfection that falls into the category of uncertainty. This means that probability distribu-
tions are used to describe the value for random variables in software development processes in
future points in time. This reflects the situation where the value of a variable in the decision
process is not known at the current point in time, but will be known when some point in the
future is reached. We use this model of imperfection in two models described in this thesis.
First, in chapter 4 quality requirements and estimations are described using continuous proba-
bility distributions as one of the possible manners to model imperfect information. The distri-
butions are used in particular when behavior needs to be described that is itself subject to a
continuous random variable, such as response time, that depends on a waiting queue. Second,
in chapter 5 we use discrete probability distributions to model changes in market demands for
products to be produced, which are used to optimize the allocation of resources with respect to
the expected profit. Since the allocation is done in a finite amount of steps, the demand state
from the market only needs to be considered in these steps, which makes a discrete probability
distribution a sufficiently accurate model. As a starting point for the reader, we shortly summa-
rize the basic concepts of continuous probability distributions that are used in this thesis.

Given a continuous probability distribution f for some event, the probability P(a,b) of the
occurrence of the event between a and b is given by:

P(a, b) =

and the expectation value E of the probability distribution is given by:

E = , where U is the universe of discourse.

In chapter 4 this theory is applied to exponential density functions, which are given by fλ(x) =
λe-λx where λ > 0. For this choice the probability Pλ(a, b) of the occurrence of an event
between a and b is given by

Pλ(a,b) = = e-λa - e-λb

f x() xd

a

b

∫

xf x() xd

U

∫

λe λx–
xd

a

b

∫

Imperfect Information in Software Design Processes

20

and the expectation value Eλ is given by:

Eλ = = 1/λ

2.4.3 Fuzzy Set Theory

The second imperfection model that is used for our approach is fuzzy set theory [Klir1995],
which is an extension of classical set theory. In classical set theory, membership of elements in
a set is defined in a binary manner; an element is either a member of the set or it is not. Fuzzy
set theory allows elements to be a partial member of a set, which is used to describe particular
types of imperfect information. The partial membership of an element x in a fuzzy set is given
by the membership value µ(x), where µ is a function that maps the universe of discourse to the
interval [0, 1]. This value is the degree to which x is an element of the fuzzy set, where 1
means “completely a member” and 0 means “completely not a member”. Like in probability
theory, a distinction is made between discrete fuzzy sets and continuous fuzzy sets. By consid-
ering the degree of membership during manipulations of the imperfect information modeled by
fuzzy sets, the resulting conclusions are arguable more justifiable. Fuzzy set theory is used in
this thesis to describe imperfect information that falls into the categories of impreciseness and
uncertainty. The flexibility of fuzzy set theory enables us to describe imperfection in func-
tional requirements as well as quality requirements and estimations, which is achieved by
using continuous fuzzy sets and in particular fuzzy numbers and fuzzy intervals.

Fuzzy numbers are a fuzzy set representation of imperfect descriptions of numbers. In such a
fuzzy set description, exactly one element has a membership degree equal to one. In this thesis,
we assume all fuzzy numbers to have a membership function with a triangular shape, which
will be referred to as triangular fuzzy numbers. A triangular fuzzy number is a fuzzy set on the
domain of real numbers whose membership function µ is given by:

µ(x) = 0 , if

µ(x) = (x-a)(b-a) , if

µ(x) = (c-x)(c-b) , if

µ(x) = 0 , if

for some real numbers a, b, c with , and is denoted by (a, b, c). In Figure 2.5 a triangu-
lar fuzzy number is depicted.

xλe λx–
xd

0

∞

∫

x a≤

a x b≤ ≤

b x c≤ ≤

x c≥

a b c≤ ≤

ba c

1

M
e

m
b

e
rs

h
ip

�

Figure 2.5 Triangular fuzzy number

Chapter 2: Definitions and Background

21

It can be seen that the value b is seen as the most appropriate value, but values close to this
value also have high membership values. Values smaller than a and larger than c are irrelevant,
so they have membership value zero.

A second type of fuzzy set used in this thesis is the fuzzy interval, which is a representation for
imperfect specifications of normal intervals. This type of fuzzy set in particular models the
fuzzy boundaries of the interval. We assume all bounded fuzzy intervals to be trapezoidal, and
the membership function µ of a trapezoidal fuzzy interval is given by:

µ(x) = 0 , if

µ(x) = (x-a)(b-a) , if

µ(x) = 1 , if

µ(x) = (d-x)(d-c) , if

µ(x) = 0 , if

for some real numbers a, b, c, d with , and is denoted by (a, b, c, d). In Figure 2.6 a
trapezoidal fuzzy interval is used to represent the imperfect statement approximately between b
and c.

Similar to the fuzzy number representation in Figure 2.5, the trapezoidal interval extends the
boundaries of traditional interval specifications by including surrounding values to a certain
membership degree. In chapter 4 we also use a special case of fuzzy intervals, the semi-infinite
fuzzy interval. We assume such type of interval to have a semi-trapezoidal shape, and to have
the following membership function:

µ(x) = 1 , if

µ(x) = (x-a)(b-a) , if

µ(x) = 0 , if

for some real numbers a, b with , and is denoted by (a, b). In Figure 2.7 a semi-trapezoidal
interval is depicted that could represent the imperfect statement smaller than approximately a.

x a≤

a x b≤ ≤

b x c≤ ≤

c x d≤ ≤

x c≥

a b c d≤ ≤ ≤

ca d

1

M
e

m
b

e
rs

h
ip

�

b

Figure 2.6 Trapezoidal Fuzzy Interval

x a≤

a x b≤ ≤

b x≤

a b≤

Imperfect Information in Software Design Processes

22

From the specification it can already be seen that semi-trapezoidal intervals are in particular
useful for specifying constraints on acceptable values, which corresponds to, for example,
quality requirements. In this picture, the interval describes a fuzzy upperbound, but naturally a
fuzzy lowerbound can be described in an identical manner.

It can be desirable at certain points to remove the fuzzy information and replace it with crisp
numbers. This is done be determining the crisp number that best represents the fuzzy set. This
process is called defuzzification. For the defuzzification of fuzzy sets, a number of methods
have been proposed in the literature, of which three have become predominant, according to
[Klir1995]. These three methods are the center of area method, the center of maxima method
and the mean of maxima method. The center of area method, which is also referred to as the
center of gravity method or centroid method, defines the defuzzified value of a fuzzy set as the
value for which the graph under its membership function is divided into two equal subareas.
The center of maxima method defines the defuzzified value to be the average of the values that
have the smallest and largest value that have the highest membership value. The mean of max-
ima method is usually applied for discrete fuzzy sets, and defines the defuzzified value to be
the average of all values in the set with the maximal membership value. A more elaborate
description of defuzzification operators can be found in the aforementioned reference.

An important concept in fuzzy set theory, is the concept of α-cuts, which is also used in this
thesis. For 0<α<=1, the α-cut of a fuzzy set F with membership function µ is defined by {x |

 } and denoted by F[α]. If F is a fuzzy number or a fuzzy interval, then F[α] is an
interval.

a b

1

M
e

m
b

e
rs

h
ip

�

Figure 2.7 Semi-trapezoidal Fuzzy Interval

µ x() α≥

ba c

1

α

p q

Figure 2.8 α-cut of a Triangular Fuzzy Number

Chapter 2: Definitions and Background

23

In Figure 2.8, a schematic depiction is given of an α-cut of a triangular fuzzy number. In this
case, F[α] = [p, q]. In general, an α-cut of a triangular fuzzy number (a1, a2, a3) is [a1 + α(a2-
a1), a3 - α(a3-a2)], for a semi-trapezoidal fuzzy interval (b1, b2) the α-cut is given by] , b2
- α(b2-b1)] and for a trapezoidal fuzzy interval (c1, c2, c3, c4) the α-cut is given by [c1 + α(c2-
c1), c3 - α(c4-c3)]. The α-cut concept is used in this thesis for the derivation of generalized
comparison operators for fuzzy numbers and fuzzy intervals.

2.4.4 Fuzzy Probability Theory

As a result of their orthogonal character, with fuzzy set theory and probability theory a wide
range of imperfect information can be described and analyzed. However, even when using
these imperfection models, finding or providing accurate information for these models can be
hard. For example, when probability density functions are used to model stochastic behavior,
identifying an accurate set of function parameters that best describe the situation can be a diffi-
cult, if not impossible, task. To facilitate this imperfection, which occurs within the definition
of probability models, the concept of fuzzy probabilities has been introduced. Fuzzy probabil-
ity theory extends probability theory with the possibility of expressing imperfection in the
parameters of the probability density function. Recently there has been an increased interest in
the fuzzy logic community in the area of fuzzy probabilities. In [Buckley2003], fuzzy proba-
bility distributions are defined by replacing parameters in families of crisp probability distribu-
tions (such as exponential, standard normal, etc.) with fuzzy numbers. This way it becomes
possible to consider a range of density functions of the same family to a certain degree, indi-
cated by the degree of membership of each parameter in the fuzzy set representation of the
respective fuzzy parameter. Fuzzy probability distributions are in particular useful when prob-
ability distributions can globally describe imperfection of information, but it remains difficult
to define the precise parameters of the chosen function. We use fuzzy probability distributions
in chapter 4 to model performance estimations.

Consider, like before, the family of exponential probability density functions, given by fλ(x) =
λe-λx where λ > 0. For a fuzzy number Λ on the domain of non-negative real numbers. The
probability PΛ(a,b) of the occurrence of an event between a and b is given by its α-cuts:

PΛ(a,b)[α] = { }

and the expectation value EΛ is given by:

EΛ[α] = { }

Note that probabilities resulting from fuzzy probability distributions, as well as expectation
values, are fuzzy numbers, typically of a non-triangular shape. This can be intuitively
explained by the fact that when it is only possible to provide imperfect inputs, it is generally
not possible to provide perfect outputs. This also does not restrict the application of our
approach, since the provided inputs for fuzzy probability distributions can be restricted to tri-
angular fuzzy numbers, and the evaluation can be facilitated with defuzzification functions.

∞–

fλ x() λ Λ α[]∈

a

b

∫

xfλ x() λ Λ α[]∈

0

∞

∫

Imperfect Information in Software Design Processes

24

2.5 Decision Support during Software Development

2.5.1 Introduction

Decision processes have been studied in various areas, and in particular in the field of opera-
tions research and decision theory. In particular, in areas where complex decisions need to be
taken and many parameters need to be considered simultaneously, decision support systems
based on these approaches have proven to be very useful. Decision support systems are used in
a very broad variety of applications and as such are difficult to capture in a single description.
However, a typical component of decision support systems is the ability for automated reason-
ing with specific types of input and coming to a unique best decision based on this information.
An important part of decision support systems is therefore formed by the decision making
model, which finds its origin in decision theory. With decision support systems it is possible to
utilize the existing knowledge in these fields, and ensure the proper application of the underly-
ing theories. Decision support methods come in many different forms and shapes, but gener-
ally they offer an automatable approach for analyzing particular design states and advice on
how to proceed from the current point. Based on the type of assistance that is offered,
[Power2002] classifies decision support systems into five categories:

• Model Driven Decision Support is based on the usage of statistical or optimization models.
The data and parameters provided by the users are used to assist decision makers in
analyzing the situation at hand.

• Communication Driven Decision Support supports the coordination of multiple people
working an a single task, and are used in particular in project settings.

• Data Driven Decision Support focusses on offering decision advice based the analysis of a
sequence of relevant data items, such as trend analysis of market demands.

• Document Driven Decision Support is aimed at managing and working with unstructured
information that can be found in a body of (electronic) documents.

• Knowledge Driven Decision Support aims to capture existing problem solving expertise
by means of storing facts, reasoning rules and heuristics.

An ongoing trend in software design is that software systems have to fulfil requirements that
are increasingly more complex, and as a result the software systems themselves also become
more intricate. In response to this increased complexity, there has been extensive research in
the area of decision support approaches for software development processes [Ruhe2004].
Since the inclusion of imperfection on development processes only adds to this complexity,
automated analysis and support becomes vital for manageable software development.

In this thesis, we propose two decision support approaches that belong to the category of
model driven decision support. Both approaches define an optimization model for providing
decision support to the software engineer, and require inputs from both stakeholders and soft-
ware engineers to determine the current state. The resource scheduling approach presented in
chapter 5 can also be considered a decision support approach that belong to the category of
model driven decision support. In particular, the optimization model and the resulting condi-
tional production plan are typical properties of this type of decision support approach.

2.5.2 Optimization-based Decision Support

In this thesis, we are particularly interested in extending the expressive capabilities of software
development processes with models that can describe imperfect information, such as probabil-
ity theory and fuzzy set theory. However, the application of the mathematical operations that
underlie these models can be difficult and cumbersome, in particular since these models are
not always well known or understood by the intended users of the approach. We therefore

Chapter 2: Definitions and Background

25

define our imperfection models as model driven decision support models, where the software
engineers and stakeholders are expected to only provide the relevant optimization inputs. The
optimization approach ensures the proper application of the mathematical operations and
offers decision support based on the results of the optimization. In this paragraph, we explore
the basic elements of optimization models, which are used as the starting point for our
approach in the following chapters. Optimization theory is the area of mathematics that studies
the extremal values of a function: its minima and maxima. Optimization theory has proven to
be useful in particular in areas of complex decision making, such as design optimization and
operations research.

Optimization problems in the mathematical sense are problems, for which a value defined by
an expression should be optimized (maximized or minimized) by choosing the value of real or
integer variables from an allowed set. Typically, a set of restrictions apply on the values these
variables are allowed to take, which can be equality or inequality constraints. A mathematical
optimization problem can be characterized as follows: Given: an objective function f: ,
where the domain D is a set. Then the optimization problem in case of minimization, is defined
as: find such that holds. The search space D is typically a subset
of the Euclidian space Rn and its elements are called feasible or candidate solutions. The feasi-
ble solution that maximizes (or minimizes) the objective function is called the optimal solu-
tion. Depending on the attributes of interest of the optimization problem, different types of
optimization approaches have been described, each with its own specific merits. For example,
integer programming is an optimization approach that searches for optimal solutions that exist
only of integer numbers. Stochastic Programming allows stochastic behavior in the parameters
and Dynamic Programming focuses in particular on optimization problems that can be decom-
posed into smaller, reusable optimization problems. Other optimization approaches include
combinatorial optimization and linear programming.

With the application of optimization theory within decision support systems, it becomes very
important that the computations that are needed for the optimization, can be performed within
a reasonable amount of time and memory usage. This aspect of optimization theory is studied
in the field of algorithmic complexity theory. In this field, a distinction is made between
between time complexity and space complexity. The time complexity of a problem is defined
by the number of steps needed in the worst case as a function of the size of the inputs. The
space complexity of a problem similarly is defined by the amount of memory needed in the
worst case as a function of the size of the inputs. It is very important for decision support sys-
tems to be aware of the complexity of the used optimization models, since it directly impacts
the usability of the approach in an industrial context. When the complexity of an industrial
application becomes too large to handle, the optimization approach is effectively invalidated.
The models in this thesis are assessed with respect to their complexity, and where possible and
necessary we define heuristic approaches that reduce the complexity at the expense of finding
only approximations of the optimal solution.

2.6 An Overview of Research on Treating Imperfect Information

2.6.1 General Approaches

The existence of imperfect information has been investigated in many different areas and for
many different purposes. In the area of handling information that is subject to imperfection,
two separated fields of research have emerged. The research is divided into a field that
addresses imperfect information by means of symbolic representations and a field that
addresses imperfection by means of numeric representations.

In the first field of research, imperfect information is represented by means of symbolic ele-
ments. The underlying formalism provides the facilities to reason with these symbolic ele-

D R→

x0 D∈ x∀ D∈ f x0() f x()≤

Imperfect Information in Software Design Processes

26

ments, and with that provides a mechanism to handle imperfect information. The main results
in this field have been achieved by means of non-monotonic formalisms. These formalisms
enable reasoning with incomplete information, and in particular facilitate the revision of con-
clusions based on the arrival of new information. As a result, it is possible to falsify conclu-
sions that were reached based on imperfect information that is falsified at a later point in time.
This behavior is not achievable in classical logic, since the monotonicity prevents conclusions
to be withdrawn. Examples of non-monotonic logics are Reiter’s default logic, circumscription
[McCarthy1986] [McCarthy1980] and autoepistemic logic [Moore1985].

The research in the second field has aimed to describe imperfect information by means of
numerical representations. The representations that are most used in this area predominantly
find their origin in probability theory and fuzzy set theory. By facilitating the use of these
numeric representations, it becomes possible to include them in reasoning processes. A well-
known approach in this area is fuzzy logic, where partial applicability of reasoning rules is
facilitated. Lofti Zadeh pioneered the work on the combination of fuzzy sets and logic to
enable the representation of and inference with imperfect information [Zadeh1965]
[Zadeh1983] [Zadeh1983a]. The research of Zadeh enabled the mathematical representation
and manipulation of imperfect statements and inputs for reasoning mechanisms, which
enhanced the possibilities for dealing with imperfect information tremendously. Fuzzy logic
has found many applications, especially in the domain of control theory [Mamdami1981]. In
possibility theory [Zadeh1978] the possible number represents the possibility that the element
is the actual value. Other approaches in this area are based on probabilistic logics
[Nilsson1986] and purely mathematical approaches such as Bayesian belief networks
[Besnard1989].

The models and extensions we have described in the previous paragraph, have lead to the defi-
nition of approaches that can deal with imperfect information within a specific context. For
instance, in game theory [Fudenberg1991] imperfection is identified in the decision process
that underlies a game-like problem. On the other hand, in artificial intelligence [Russel1995]
the focus has been predominantly on the ability to represent and reason with imperfect knowl-
edge within logical inference mechanisms. In all these approaches, attempts are made at classi-
fying the types of imperfect information, depending on the character and nature of the
imperfection. In these classifications, the distinctions that are made correspond to the ones we
have made in section 2.3. For example, in an early classification in [Bonissone1985] imperfec-
tion is divided into three categories. These are uncertainty, incompleteness and imprecision.
According to this classification, uncertainty reflects a subjective opinion on the truth of a fact,
which at this point is not verifiable. Imprecision corresponds to a value which can not be mea-
sured with the desired precision and therefore remains imprecise. Finally, incompleteness
refers to the complete absence of a particular value that is required for the information to be
useful.

For other approaches, the classification of imperfection is refined into additional categories.
For example, in [Bosc1993] in addition to slight alterations to the previous definitions, two
new categories of imperfection are identified, called vagueness and inconsistency. Vagueness
is defined as a fuzzy description of impreciseness, which implies an extension based on fuzzy
set definitions. In [Parson1996], this new category is aimed at representing vague predicates
such as cheap and efficient. Inconsistency is defined to be a type of imperfect information,
where two values are directly or indirectly contradicting each other. When this is the case, the
imperfect information can only become perfect by resolving the conflict, for example by
removing the least reliable value. From this overview it can be seen that many classifications
exist of imperfect information, all of which are aimed at establishing a common understanding
of the nature of imperfection. It is important to understand the type of imperfection in the
available information, since the impact of, for instance, impreciseness differs from the impact
of uncertainty on decision making processes.

Chapter 2: Definitions and Background

27

2.6.2 Explicit Support for Imperfection in Development Methods

We have already established that imperfect information is part of our everyday life. The diffi-
culty of managing this imperfection increases with the complexity of the activity that we have
to perform. In particular design activities where many different aspects need to be considered
simultaneously, such as software development, suffer from imperfect information in the design
inputs. In the literature, a number of methods have been proposed, which provide support for
specific design activities that are hampered by imperfect information. Generally, these meth-
ods provide an approach that extends the expressive capabilities of the development process, in
order to increase the accuracy of assessments. This is achieved by adding models to design
activities, which describe the important properties of imperfect information, for instance by
means of probability theory or fuzzy logic. By including these models in the design process
and considering them according to their underlying theories, the influence of imperfect infor-
mation can be more accurately considered. While this type of approach has received little
attention in the field of software development, in other disciplines, such as mechanical engi-
neering, approaches have been defined that successfully reduced the impact of imperfect infor-
mation. In the following, we briefly explore the work that has been done in this area.

While modeling attributes of imperfection in the inputs of design processes is not new, it is sel-
dom applied in the field of software design. In [Aksit2001a] and [Aksit2001], fuzzy logic is
applied to support the partial applicability of design heuristics in the Object Modeling Tech-
nique development process. By applying fuzzy reasoning techniques, the inconsistency can be
controlled and maintained to a point, where it can be resolved by new design input. In
[Yen1993] and [Lee2003], a framework is defined based on fuzzy logic, which can be used to
model imperfect functional requirements. The requirements are specified as pre- and post-con-
ditions for design steps. After each design step, the proposed solution can be compared with
the requirements, in a manner similar to proving an invariant over a piece of source code. The
resulting value then indicates to which degree the requirement holds. In [Shaw1996], creden-
tials are introduced as a means for incremental and evolving specifications. They are defined
as property lists, where for each property, such as reliability or robustness, a value is given for
its specification. In addition to this, the credibility of the value is given, for example asserted or
verified, which indicates to which degree the value can be trusted. The credentials are main-
tained and updated along the design process, so that the software designer has a good under-
standing of the information that is used. In this thesis, we extend on this notion by defining
mathematical models to express the credibility of the information. These models can be used to
systematically analyze decision alternatives and maintain the credibility information over mul-
tiple subsequent design steps.

Also in the field of computational intelligence, efforts have been made to address the problem
of imperfection in software design activities. Based on specific areas support models have
been proposed. For example, the work in [Mayrhauser1998] analyzes the possibilities of using
neural networks for supporting software testing. The premise is that the learning capabilities of
neural networks can facilitate a more effective testing approach. In [Gray1998]], a number of
techniques is proposed for development effort of software products based on fuzzy logic. In
[Pedrycz1998], an extension of the traditional object-oriented datamodel is proposed. This is
achieved by for instance supporting imperfect input in class attributes. Also typical operations
within this model is treated, such as inheritance and aggregation. In [Pedrycz1999], a granular
model is proposed the capture the imperfection in the estimations of cost of software develop-
ment processes. This model is augmented on the COCOMO cost estimation models and can
capture the inherent fuzziness of the input variables. The assessment of software quality using
techniques from computational intelligence is proposed in [Reformat2002]. In particular,
genetic decision trees are used to classify software objects with respect to their quality. With
this approach to describe estimated results and use it for preliminary evaluation. Finally,
[Pedrycz2002] identifies the suitability of computational intelligence to support the activity of
software engineering. The three main technologies of computational intelligence, neural net-

Imperfect Information in Software Design Processes

28

works, granular computing and evolutionary optimization, are linked to various activities in
software engineering, such as cost estimation, evaluation of domain knowledge and data visu-
alisation.

Other approaches are more generic, and focus on imperfection support during development
processes in general. For instance, in [Liu2005], the decision making process is captured in a
tree structure, based on decision trees. To this structure, an extension to decision trees is pro-
posed, which describes the imprecise attitude of the decision maker with respect to risks. This
is modeled using techniques from fuzzy logic, and combined with the decision optimization
algorithms of probabilistic decision trees. In the field of engineering design, an approach has
been proposed in [Law1995], to model imprecision in design inputs. This imperfection is cap-
tured using fuzzy set theory, and is then used to explore the possible design alternatives based
on this model. In addition, the method defines means to evaluate design alternatives based on
these models.

2.7 Conclusions
In this chapter, we have taken a first look at the problem of imperfect information in software
design processes. Imperfect information is a phenomenon that is well studied, and in the litera-
ture a multitude of approaches can be found. However, these results have found little applica-
tion in the field of software development. In this chapter, we have made a distinction between
imprecise information and uncertain information, a classification that is based on the nature of
the imperfection. In imprecise information, imperfection exists and is not necessarily resolved
in the future. Uncertain information, on the other hand, will be resolved with certainty within a
limited time. Additionally, we have made a distinction between logical imperfection and tem-
poral imperfection, where the first is imperfection in the phenomenon that needs to be
described, and the second is imperfection in the time of occurrence of a well-known phenome-
non.

To assess the imperfection support in state-of-the-art software development processes, we
have examined the waterfall model, the Rational Unified Process, Agile Processes and Analy-
sis-Synthesis processes. We conclude that most modern development processes are aware of
the difficulty of defining precise and accurate requirement specifications. In response to the
sensitivity of the waterfall-model for imperfection in requirements and other sources within the
development processes, many design processes have introduced iterative design as a counter-
measure. Nonetheless, differences can be identified between the implementation of incremen-
tal design in software development processes. Where a detailed process like the RUP uses
relatively long iterations, agile processes have very short iterations and synthesis analysis is
somewhere in between. In addition to iterative design, analysis-synthesis approaches also
introduce problem decomposition to isolate the influence of imperfection information on the
software design process.

While iterative design has achieved some success in addressing changes in requirements, the
influence of imperfect information on software development processes is still considerable. As
we have identified in chapter 1, for iterative design to be successful, four requirements must be
fulfilled. However, in a realistic design setting these requirements can not be fulfilled, which
means it is dangerous to rely solely on iteration to resolve problems caused by imperfect infor-
mation. Rather, the imperfection that is part of the information being used must be described
and considered in the design process, in addition to using an incremental design approach.

For the description of imperfect information, we have introduced the basic concepts of three
imperfection models, probability theory, fuzzy set theory and fuzzy probability theory. Each of
these models describes specific types of imperfection and therefore is useful for particular
types of imperfection. To support the application of these imperfection models within a spe-
cific context, such as software design, we have introduced the core concepts of optimization

Chapter 2: Definitions and Background

29

based decision support models. The mathematical definition of these models ensures the
proper application and reasoning with the models used for imperfection. In the following chap-
ter we introduce our approach for dealing with imperfect information in software design pro-
cesses.

Imperfect Information in Software Design Processes

30

Chapter 3: Decision Support for Imperfect Functional Requirements

31

C H A P T E R

Chapter 0DECISION SUPPORT FOR IMPERFECT
FUNCTIONAL REQUIREMENTS

3.1 Introduction
Software systems have to fulfil requirements that become increasingly more complex, and as a
result the software systems themselves also become more intricate. One of the key issues for
managing this increased complexity, is to have a concise and unambiguous requirement speci-
fication at the start of the software development process. However, as is identified by most
modern development processes, it is typically very difficult to come to such a specification.
Software engineers and stakeholders can only form a partial view of the complete system at the
early stages of software development and as a result requirement specifications contain ambi-
guities, conflicts, vagueness, etcetera. Therefore the definition of requirement specifications
introduces imperfect information into the software development process.

In this chapter we describe an approach for the support of imperfect functional requirements
during software design. To facilitate the use of the proposed imperfection model, we first
define the Artifact Trace Model, which is aimed at offering decision support when trade-offs
must be made between system functionality and cost of implementation. In the second part of
this chapter, we extend the Artifact Trace Model with the concept of Fuzzy Requirements,
which is used to describe the aforementioned imperfection in functional requirement specifica-
tions. The approach is illustrated by an industrial example based on a traffic management sys-
tem.

“My Lord Baron, if you wish to make the best use of my ser-
vices, you must give me adequate information. Wasn't this
conversation recorded?”

- From Frank Herbert’s Dune [Herbert2005]

Imperfect Information in Software Design Processes

32

3.2 Imperfect Information in Functional Requirements
During the last decades, a considerable amount of software design methods have been intro-
duced, such as Structural design [Yourdon1979] and the Rational Unified Process
[Jacobson1999]. Although there are differences among the methods, the general structure of
the methods is quite similar. They all require a well-defined requirement specification, which
is transformed into a system design in a number of design steps. As has been identified in
[Marcelloni1999], one major problem with software design methods is the occurrence of
incomplete information during the design process. While modern software design methods
acknowledge the difficulty of defining “perfect“ requirements, they depend on their perfection
to ensure that the resulting software system precisely reflects the requirements. When at later
stages the requirements change or have been misinterpreted, additional iterations and redesign
is needed. The task of defining requirement specifications that are “perfect enough“ is the
responsibility of the stakeholders and software engineers, and to support this activity various
approaches have been proposed and applied. In particular, in the field of formal specification
the aim is to define requirement specifications in such a manner, that it becomes possible to
formally verify the correctness of the designed system with respect to these requirements.
Other approaches try to improve requirement specifications by exhaustive descriptions and
abstractions to represent the concepts. While these approaches have been successful in isolated
parts of software design, software development still suffers from imperfect and changing
requirements. Existing approaches aim to come to a perfect set of requirements, which requires
considerable effort and is only rarely achieved. We conclude that imperfect information is
inherently present in all requirement specifications. By application of requirements analysis
the imperfection can be resolved in parts of the requirements, but not completely removed
from the requirements specification. If imperfection in requirement specifications is recog-
nized and taken into account during the design process, it is possible to minimize the amount
of incremental design steps that are needed to stabilize the software design.

3.3 Relationship Tracing for Intermediate Design Artifacts

3.3.1 Introduction

One of the big challenges in software engineering is to balance the design and implementation
of the software system with budgetary restrictions and time constraints. Software engineers
select the system design from several design alternatives, and try to reuse existing system parts
to minimize costs and development time. Even in the case of a crisp and concise requirements
specification this is a very challenging task. This is caused by the fact that costs and develop-
ment time largely depend on the components that need to be implemented, while it is at the
same time unclear which requirements are being implemented by the respective components.
The lack of a formal trace from the requirements to the components that implement them,
makes it impossible to systematically explore the alternative component sets that can be used
to implement the system. This hampers in particular the possibility to analyze the trade-offs
between the functionality that is provided to the customer and the components that will be
implemented. In response to the increased complexity in software development there has been
much research in the area of decision support approaches for software design processes
[Ruhe2004]. The accuracy of the decision support approach heavily depends on how well the
model represents the relevant information in the software design process, and whether the rea-
soning model is capable of interpreting the information accordingly. However, since decision
support approaches are typically not prepared for imperfect information, the usefulness of the
decision support mechanism is drastically reduced.

To resolve the problems, an approach is needed that explicitly captures the relationship
between the requirement and the components that implement this particular requirement. This

Chapter 3: Decision Support for Imperfect Functional Requirements

33

relationship should enable the software engineer to trace components of the designed architec-
ture back to the requirements from which the components originate. Additionally, the relation-
ships should capture the reuse of components, or intermediate design artifacts, during the
design of the system architecture, since these elements become vital when considering trade-
offs between functionality and implementation effort. Finally, this approach should provide
techniques to model imperfection in functional requirement specifications, and support reason-
ing with these techniques to provide better decision support. To resolve these problems, we
propose the Artifact Trace Model. In the second part of this section we extend the Artifact
Trace Model with fuzzy requirements, as a means to describe and reason with imperfect infor-
mation. With this approach, the possibility to model and analyze imperfect information is
introduced in the definition of functional requirement specifications. The Artifact Trace Model
offers optimization support, which can assess the imperfect information in the design process
and minimize its risk and impact.

3.3.2 The Artifact Trace Model

Our approach for dealing with imperfect information in functional requirement specifications
is divided into two parts. The first part is a tracing model that addresses the need for a tech-
nique, which makes the relationship amongst intermediate design artifacts explicit. The second
part extends the tracing model with a technique to describe imperfect functional requirements.
In this section we present the Artifact Trace Model (ATM), which captures the relationships
between intermediate design artifacts of subsequent design steps. This tracing model is based
on design processes that follow the analysis and synthesis approach, as for instance exempli-
fied in the Synthesis-based Software Architecture Design method [Tekinerdogan2000], known
as Synbad. In Figure 2.4 in chapter 2, the design phases of Synbad are depicted schematically.
In an analysis and synthesis based approach, such as Synbad, the user requirements in phase I
lead to the definition of a relevant set of interrelated problems that should be solved in phase II.
Based on this problem decomposition, the relevant domains of expertise are identified (com-
monly named solution domains) in phase III. In step IV from these domains the solution con-
cepts are extracted that make up the system design.

From phase IV two different iterations can be done. The refinement iteration is the refinement
of each solution concept into smaller concepts that implement the current one, which essen-
tially repeats the design process at a lower level of abstraction. This is done by defining
(lower-level) requirements for the solution concept, which are in turn mapped to problems.
These problems are mapped to solution concepts. This iterative cycle can be repeated until an
implementable solution is obtained. The second possible iteration is the quality balance itera-
tion cycle. The current set of solution concepts is graded by making an evaluation of the spe-
cific quality attributes such as stability, performance, etcetera. These characteristics are
compared to the respective quality requirements. This leads to the identification of errors in the
quality balance. These errors are mapped to problems, which are in turn mapped to solution
domains. From the solution domains eventually the solution concepts of higher quality are
selected. This iterative cycle can be repeated until a solution of acceptable quality has been
obtained, and refinement iterations can be performed.

In each step in Synbad, an intermediate design artifact (such as a requirement), is refined into
new intermediate design artifacts (like for instance a set of problems that should be solved to
implement a particular requirement). The ATM is a directed graph, in which the nodes are the
intermediate design artifacts that result from the software development process. In order to
describe complete traces of analysis and synthesis based design methods, the Artifact Trace
Model identifies the following intermediate design artifact types:

• Requirement

• Problem

Imperfect Information in Software Design Processes

34

• Solution Domain

• Solution

• Component/Class

The refinement is a design step, which takes a single design artifact as input and has a set of
artifacts as output. The activity of design without tracing, therefore, means that the input is
replaced by the output. In the Artifact Trace Model the relation between inputs and outputs is
recorded; the output nodes of a refinement become children of the input node. In an analysis-
synthesis development process, the refinement steps follow the order as it is indicated in Fig-
ure 2.4, in accordance with Synbad. In this order requirements are requirements are refined to
problems, problems to solution domains, solution domains to solutions and solutions to classes
and.or components. Frequently in analysis and synthesis based design, the solution domain
step is not made explicitly, but rather incorporated into the step from problem to solution. In
the ATM the artifact relations will follow the same order. As a result of having a set of outputs,
refinement in the ATM can be schematically depicted as in Figure 3.1.

In this picture, the requirement is refined to multiple new artifacts. This describes the situation
where all the new artifacts must be solved in order to fulfil the originating requirement. Note
that this situation does not describe alternative refinements for the input. The evaluation and
selection of design alternatives is treated in chapter 4. Obviously, when artifacts from previous
refinements can be reused for the refinement of other inputs, the respective nodes in the ATM
are reused as much as possible. Due to the tracing of design artifacts, the Artifact Trace Model
is extended as a result of every refinement step. The inputs of the refinements are not dis-
carded, but remain part of the artifact trace. The starting point of the ATM is a set of require-
ments, which form the inputs of the first refinement steps, in accordance with analysis-
synthesis approaches. A typical Artifact Trace with multiple refinement relations is depicted in
Figure 3.2.

R

P1

P2

Figure 3.1 Artifact Refinement

Chapter 3: Decision Support for Imperfect Functional Requirements

35

This Artifact Trace Model starts with three requirements at the top of the picture. Req1 is
refined to two problems that should be solved to fulfil this requirement, Req2 and Req3 are
refined to a single problem. In the figure, we also see two overlapping relations: Solution2.1.1
provides part of the solution for both Problem1.2 and Problem2.1, which makes this a reuse
refinement. Using the traces that have been defined we now determine the components that are
needed for both requirements. For Req1 the following set of components is needed: { Comp1.1,
Comp1.2, Comp2.1.1.1, Comp2.1.1.2 }. For Req2 the following set is needed: { Comp2.1.1.1,
Comp2.1.1.2, Comp2.1.2 } and for Req3 the following set: { Comp3.1, Comp3.2 }. Alternatively, a
set of components can be traced back to the set of requirements that are implemented by it. For
example, the component set { Comp1.1, Comp1.2, Comp2.1.1.1, Comp2.1.1.2 } implements Req1.
Req2 is not implemented since Solution2.1.2 is not implemented by this set of components.

3.3.3 Trade-offs between Stakeholder Desires and Implementation Effort

The Artifact Trace Model allows the software engineer to determine the components that are
needed for the implementation of any set of requirements. This is achieved by tracing down all
the components that can be reached from a set of requirements in the Artifact Trace Model. We
can use this tracing capability of the Artifact Trace Model to perform a trade-off analysis
between the requirements that will be implemented and the estimated effort for the implemen-
tation of the needed components. To facilitate the trade-off analysis, we define two additional
properties, cost for components and stakeholder interests for requirements. The cost property
of components corresponds to the estimated effort that is needed to implement the component.
Stakeholder interests are numeric values of requirements that represent attributes of interest for
the stakeholders. Examples of stakeholder interests are relevance, urgency, desirability and
applicability. Stakeholder interest values can be defined for multiple interests of the stakehold-
ers, which means that all requirements are tagged with a numeric value for each stakeholder
interest.

Req1 Req2

Problem1.1 Problem1.2 Problem2.1

Solution2.1.1 Solution2.1.2Solution1.1 Solution1.2

Comp2.1.1.1 Comp2.1.1.2Comp1.1 Comp1.2 Comp2.1.2

Req3

Problem3.1

Solution3.1

Comp3.1 Comp3.2

Figure 3.2 An example of an Artifact Trace

Imperfect Information in Software Design Processes

36

To illustrate the use of stakeholder interests, suppose that the requirements in Figure 3.2 are
tagged with a number that indicates their relevance and a number that indicates their desirabil-
ity: Req1 has a relevance 1 and desirability 1, Req2 has a relevance 2 and desirability 1 and
Req3 has a relevance 1 and desirability 2. This means, for instance, something like: Req2 is
twice as relevant as Req1 and Req3 is twice as desirable as Req1. The stakeholder interest val-
ues enable the trade-off between implementing a set of requirements and the costs or stake-
holder interests that are attributed to the implementation effort. The trade-off implies that only
a subset of the identified requirements will be implemented. The problem for a trade-off there-
fore can be states as: which subset S of the set of requirements should be implemented in order
to attain the optimal result.

We define two functions for the evaluation of a subset S of the initial set of requirements R.
Firstly, Cost(S) corresponds to the sum of the costs for implementation of the components that
are needed for the requirements of S. Secondly, StakeholderInterest(x, S) corresponds to an
aggregated value of the stakeholder interest values of the requirements of S for stakeholder
interest x. The aggregation of this combined value can differ per design process, but typical
aggregation operators for this are summation or multiplication, which can be combined with a
weight per requirement. Here, we define this function to be:

StakeholderInterest(x, S) = =

In this definition, rx is the stakeholder interest value for stakeholder interest x for requirement r
and p(r) corresponds to the membership of r in S. When we consider the requirements of figure
Figure 3.2 with the values for relevance and desirability as defined above we can, for instance,
make the following computations:

StakeholderInterest(Relevance, { Req1, Req2 }) = 1+2 = 3

StakeholderInterest(Desirability, { Req2, Req3 }) = 1+2 = 3

StakeholderInterest(Relevance, { Req1, Req2, Req3 }) = 1+2+1 = 4

By using the combined stakeholder interest values, it is possible to optimize the subset of
requirements that will be provided with respect to a certain optimization goal. This goal can for
example, be to maximize relevance or to minimize costs. The definition of the goal function G
can be configured to best represent the optimization problem. For example, G might be a
weighted average of stakeholder values:

where µ(x) is the weight of the stakeholder interest x. Another possible goal would be to mini-
mize the cost of the system:

G(S) = Cost(S)

We define the trade-off analysis as an optimization problem as follows: For a system design
with requirements set R, the set of requirements S is optimal with respect to the goal G under a
set of restrictions, when:

1 S satisfies every restriction in the restriction set

2 If a set S’ exists that satisfies the restrictions in the restriction set, then
(maximization) or (minimization)

rx
r S∈
∑ p r()rx

r R∈
∑

G S() µ x()StakeholderInterest x S,()
x

∑=

G S() G S′()≥
G S() G S′()≤

Chapter 3: Decision Support for Imperfect Functional Requirements

37

In this definition G(S) corresponds to the goal value of the set S. The restrictions that are
imposed on the optimization can be of two types:

which respectively express that the cost of the system should not exceed c, and that the aggre-
gate stakeholder interest value for interest x should be at least the threshold value c(x). The
variables of the optimization problem are p(r), which takes values zero (requirement not imple-
mented) and 1 (requirement implemented). The goal function and the restrictions are linear
expressions on these variables. This means, that the optimization problem can be solved by 0-1
programming [Foulds1984]. While in section 3.4 we apply the Artifact Trace Model approach
to the Traffic Management System example with only one stakeholder interest (see below), in
section 3.5.2 we elaborate on the concept of multiple stakeholder interests and extend it with
fuzzy requirements.

3.4 Case Study: The Traffic Management System
To demonstrate the application of the Artifact Trace Model and the trade-off analysis, we
apply it to an example called the Traffic Management System. We revisit the results of this
section in section 3.6 to demonstrate the expansion of the Artifact Trace Model with fuzzy
requirements.

3.4.1 Example Case: The Traffic Management System

The Traffic Management System (TMS) is a regulation system, designed to monitor and regu-
late the traffic flow on a national scale. To utilize the infrastructure fully and to plan the future
of the traffic systems, a new TMS is being developed. The system is supposed to provide the
necessary technical support for monitoring, controlling, managing, securing and optimizing
the traffic flow effectively. Since this scale and scope of the TMS is too large to consider com-
pletely here, we will focus on the section which handles task allocations based on scenarios
and available traffic information. The description that is provided by the stakeholders for this
particular part is the following:

“The TMS should provide assistance when the traffic flow is limited. It is the job of the TMS
to support operators to coordinate the activities that should reset the traffic flow to its
“normal“ state. To achieve this, the TMS should support the action coordination for traffic
flow normalization. This is done by allocating tasks and scenarios to system operators. The
Task Allocation part should gather and store information about traffic in its direct and
indirect geographical vicinity. To communicate the tasks and actions, the TMS should be
able to access its connected roadside systems. In addition, the TMS should support systems
operators in identifying tasks and actions that will normalize traffic flow as fast as
possible.”

We summarize the functional requirements for the TMS from this specification as follows:

1 The TMS must support displaying relevant information to the users of the TMS

Cost S() c≤

StakeholderInterest x S,() c x()≥

Imperfect Information in Software Design Processes

38

2 There should be an explicit, convenient model of tasks and scenarios

3 The system must support action coordination for optimal normalization of traffic flow

4 The system should support task allocation

5 Contextual Information should be accessible

6 The TMS should be able to communicate with the roadside system

These requirements describe the section of the system which is particularly aimed at task al-
location and the communication with to the outside world. Obviously, for a system that is
responsible for regulating traffic flow, it is very important that the system adheres to the de-
scribed requirements to ensure traffic safety. Assume that after a first evaluation of the require-
ment specification, the software architects have come up with an abstract architectural design
of the Traffic Management System, which is depicted in Figure 3.3.

The conceptual model in this figure describes an abstract architecture of the Traffic Manage-
ment System. In this architecture, the functionality is divided into several abstract entities,
which will contain the most important functionality in the complete system. These entities are
represented by boxes in the figure. For example, the box Task & Scenario Model is the abstract
entity that represents all the classes and components that will be defined to model tasks and
scenarios. The arrows between the boxes indicate the existence of a “usage“ relationship
between these entities. For example, the Action Coordinator uses the Task & Scenario Model
to describe actions in terms of tasks and scenarios. The sub-boxes in the Communication Inter-
faces indicate individual interfaces, but they have been grouped for the sake of readability.

In the abstract architecture, six elements are identified for the Traffic Management System,
which relate to the concepts described in the requirement specification. The tasks and scenar-
ios for the normalization of the traffic flow are modeled with the Task & Scenario Model. Con-
textual information regarding the current state of the traffic is modeled with the Contextual
Information Model. Task allocations are handled by the Task Allocator, which retrieves the
information from the Task & Scenario Model. The Display Formatter transforms the informa-
tion that needs to be displayed to the users of the TMS to a displayable form for the Traffic
Display System. Finally, the Action Coordinator determines and coordinates the actions that

Display Formatter

Communication Interfaces

Contextual

Info Interface

Traffic Management

Display Interface

Task Allocation

Interface

Action Coordinator

Task Allocator

Task & Scenario ModelContextual Information Model

Figure 3.3 Abstract Architecture for the Traffic Management System

Chapter 3: Decision Support for Imperfect Functional Requirements

39

should be taken to normalize traffic flow. The Communication Interfaces enable the interac-
tion with the system from both inside and outside the TMS.

In the case that traffic flow is hindered, the TMS will initiate a traffic flow normalization.
Based on this conceptual model this is achieved by defining a number of tasks and scenarios
using the Task & Scenario Model. In the next step, the Action Coordinator allocates these tasks
and scenarios to system operators using the Task Allocator. After this, the information from
the roadside system is collected and stored in the Contextual Information Model. Finally, the
roadside receives the information and is normalized by sending the actions to the display using
the Display Formatter. This process is repeated until the traffic flow has been normalized.

3.4.2 The Architectural Design of the Traffic Management System

The next step in the design of the Traffic Management System is to identify the components
that are needed to realize the proposed structure of the abstract architecture in Figure 3.3. To
design the refined architecture of the Traffic Management System, we apply a synthesis-analy-
sis approach, which means that first the requirements are transformed into a set of problems
that need to be solved. For each of these problems a solution domain and a solution is identi-
fied. Finally, from these solutions the refined architecture is defined. In Table 3.1 the first step
is described, where for each requirement the relevant problems are identified. Note that the
table essentially defines the relationships between the requirements and problems.

In Table 3.1, for each requirement a number of problems are identified that need to be
resolved, in order to fulfil the respective requirement. These problems focus on particular
aspects of the requirement, for example, for requirement 5 the first problem is to decide on the
interaction mechanism, and the second problem is how this should be supported by the model.
Note that a number of problems are reused for multiple requirements. For example, P2.1 is a
problem that should be solved for both requirement 2 and requirement 4. This means that when
P2.1 is solved, this resolves a part of requirement 2 as well as requirement 4. Also note that a
specific interpretation is given to vague descriptions in the initial requirements. For example,
requirement 2 requires a “convenient model“, which is interpreted as “extensible“ during the
problem definition phase.

Table 3.1 From Requirements to Problems

Requirement Problems to be solved

1 P1 How do we display information?

P6.1

2 P2.1 How do we express Tasks and Scenarios in an extensible manner?

P2.2 How do we capture Task and Scenarios in a portable and exportable manner?

3 P3.1 How do we normalize traffic flow with actions?

P3.2 How do we rate normalizations with respect to each other?

4 P2.1

P4.1 How do we support a generic Task Allocation Support Model?

P4.2 How do we offer this information?

5 P5.1 How do we support interaction with the system?

P5.2 How do we define a generic model that captures contextual information for

external usage?

6 P6.1 How do we make the internal data available?

P6.2 How do we realize a constant and stable communication stream?

Imperfect Information in Software Design Processes

40

After the problem identification the design process is continued with the identification of solu-
tions for the problems that have been found. In order to solve the problems that have been
identified in Table 3.1, the software engineers use available knowledge sources on the specific
areas, which are part of the applicable solution domains. By choosing solutions that can
resolve multiple problems at the same time, the amount of effort needed to complete the sys-
tem can be reduced. The solutions that were selected by the software architect for the problems
in Table 3.1 can be found in Appendix A, Table A.2. For example, a common problem for the
Traffic Management System is the communication of data. Typically, a uniform communica-
tion interface is a solution from which the base functionality can be reused multiple times. As
a result the uniform communication interface is used to solve P6.1 and P6.2. In for example
problem P2.1 there is emphasis on the extensibility of the task and scenario model, and for
P5.2 there is an emphasis on genericity of the model. By capturing the models in XML and
reusing the communication facilities, these considerations can be addressed while minimizing
implementation effort. The complete set of solutions that are chosen can be found in Appendix
A.

As the final step, the software architects refine the selected solutions to a set of components
and place them in the abstract architecture, which localizes the functionality that is needed to
implement the system. Since the TMS is decomposed into solution parts, the structure of the
refined architecture is largely known. However, since a number of solutions are too large to fit
into one component, and other functionality can provided by commercial components, the
components form a more refined model of the TMS system. The refinement step from the
selected solutions to the components that implement them is described in Appendix A, Table
A.3. In this table for each component also the implementation effort is estimated in person-
months. The software engineers now have completed the architectural design of this part of the
Traffic Management System. When we depict the relationships defined in the various tables in
an Artifact Trace Model we get the picture of Figure 3.4.

R

5

R

2
R

4

R

6

R

3

R

1

P

5.1

P

5.2

P

3.1

P

3.2

P

1

Over

all

P

2.1

P

2.2
P

4.1

P

4. 2

P

6.1

P

6.2

S

4.2.1

S

4.2.2

S

5.1.1

S

5.1.2

S

5.2

S

2.1

S

2.2.1

S

2.2.2
S

4.1

S

6.2.2

S

6.1

S

6.2.1

S

3.1

S

3.2

S

1

C

2.1.2

C

4.2.1

C

4.2.2

C

5.1.1

C

5.1.2

C

5.2

C

2.1.1

C

2.2.1

C

2.2.2
C

4.1

C

6.2.2

C

6.1

C

6.2.1

C

6.2.1

C

3.1

C

3.2

C

1

III

0.5

IX

4

X

0.5

XI

1

XII

0.1

XIII

0.5

II

3

IV

1

V

3.5
VIII

1

XVII

4

XIV

3

XV

2

XVI

2

VI

2

VII

2

I

3

Figure 3.4 Artifact Trace Model for the Traffic Management System Architecture

Chapter 3: Decision Support for Imperfect Functional Requirements

41

In this figure all the relationships between the intermediate design artifacts are depicted. In
case of shared relationships the node representing the shared artifact is also shared by its par-
ents. In the figure, all the information of the tables is included, as well as the expected imple-
mentation effort of the components. For example, for problem R1 two subproblems were
identified: P1.1 and a shared problem P6.1. We can also see that P1.1 is resolved by the com-
ponent C1, which takes 3 person-months to implement. When we place the components in the
abstract architecture according to its structure, this results in the following picture:

In Figure 3.5, the identified components are placed in the abstract architecture. In this figure,
the components represent implementation units, which are placed into the respective parts of
the abstract architecture. The resulting refined architecture is an implementation of the require-
ments specification at the beginning of the paragraph. Obviously, all the components are
needed to implement the requirements for the Traffic Management System, but for illustra-
tional purposes we analyze a number of requirement sets in Table 3.2. First we assume that we
have identified the stakeholder attribute “relevance” and since the stakeholders consider all
requirements to be equally relevant, the relevance value for each requirement is set to 1. Addi-
tionally we define the overall relevance for a system to be equal to the number of implemented
requirements.

Display Formatter

Communication Interfaces

Contextual

Info Interface

Traffic Management

Display Interface

Task Allocation

Interface

Action Coordinator

Task Allocator

Task & Scenario Model

Contextual Information Model

II. XML Schema

Tasks & Scenarios

VIII. XML Schema

Task Allocation

X. XML Communication

Component

XI. Corba Communication

Components

XII. SQL Query

Component

XIII. Database +

Serializer Component

XVII. Corba based

Communication Component

XIV. Uniform

Communication Interface

VI. Relocation

Strategy Component

VII. Strategies Comparison

And Selection Component

I. Definable Views on

Traffic Data Component

III. Common File

Format Definition

X. XML Communication

Component

IX. Open Source

XML Parser Component

IX. Open Source

XML Parser Component

III. Common File

Format Definition

III. Common File

Format Definition

XV. Dynamic Protocol

Support Component

XVI. Video Streaming

Support Component

IV. State & Scenario Models

In a Specific Language

V. Custom Language

Parser Component

Figure 3.5 Refined Architecture for the Traffic Management System

Imperfect Information in Software Design Processes

42

Table 3.2 describes five partial systems by summing up the requirements that are fulfilled by
implementing the respective components. In the first column of Table 3.2, the requirements are
displayed that are implemented for the system alternative. The second column contains the
components needed for the implementation of the requirement set. The third column indicates
the relevance of the system alternative, which is in this case equal to the amount of require-
ments that are implemented since all requirements are equally relevant. Finally, in the fourth
column the cost of implementing the set of components is displayed, which is equal to the sum
of the implementation efforts. Assume that these 5 systems satisfy the set of restrictions. In
section 3.3.3 we defined two configurations, cost-based optimization and relevance-based
optimization. Based on cost minimization the fifth option should be selected. However, based
on relevance, either the first or the second option should be selected. In a typical industrial
application the relevance evaluation can be more complex by including, for instance, weights
on requirements. In section 3.6, we extend the Artifact Trace Model with fuzzy requirements
and revisit the optimization analysis for the Traffic Management System.

3.5 A Model for Imperfect Requirements based on Fuzzy Sets

3.5.1 Imperfect Information in Functional Requirement Specifications

While modern software design methods acknowledge the difficulty of defining “perfect“
requirements, they depend on the perfection of the requirements to ensure that the resulting
software system precisely reflects the requirements. When at later stages the requirements
change or have been misinterpreted, additional iterations and redesign are needed. The task of
defining requirement specifications that are “perfect enough“ is the responsibility of the stake-
holders and software engineers, and to support this activity various approaches have been pro-
posed and applied. In particular, in the field of formal specification the aim is to define
requirement specifications in such a manner, that it becomes possible to verify the correctness
of the designed system with respect to these requirements. Other approaches try to improve
requirement specifications by exhaustive descriptions and abstractions to represent the con-
cepts. While these approaches have been successful in isolated parts of software design, soft-
ware development still suffers from imperfect and changing requirements. Existing approaches
aim to come to a perfect set of requirements, rather than acknowledge the fact that imperfect
information is inherently part of requirement specifications. As a result, it is impossible to
define a complete set of requirements without any imperfection, even when using these
approaches.

Table 3.2 System Evaluations of the TMS

Requirements Components Relevance Cost

1, 2, 3, 4, 5 I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII,

XIII, XIV

5 22.1

1, 3, 4, 5, 6 I, II, III, VI, VII, VIII, IX, X, XI, XII, XIII,

XIV, XV, XVI, XVII

5 28.1

2, 3, 5, 6 II, III, IV, V, VI, VII, XI, XII, XIII, XIV,

XV, XVI, XVII

4 24.1

1, 2, 3, 4 I, II, III, IV, V, VI, VII, VIII, IX, X, XIV 4 23.5

1, 3, 5, 6 I, VI, VII, XI, XII, XIII, XIV, XV, XVI,

XVII

4 18.6

Chapter 3: Decision Support for Imperfect Functional Requirements

43

The cause of the imperfection in requirement specifications is two-fold. Firstly, the initial
requirements are defined in an early phase of the design process. At this point it is very diffi-
cult for both the stakeholders and the software engineers to precisely visualize the system upon
completion. This is exemplified by changes that are made to the requirements along the design
process, and the occurrence of new requirements. Secondly, requirements are normally
described in natural language, which typically suffers from imperfection. Many terms in natu-
ral language have multiple meanings, are ambiguous or vague. The consequence is that the
system designers should either clarify the requirements with the stakeholders, or interpret the
imperfect requirement(s). However, neither approach guarantees a satisfactory result, since
stakeholders might be unable to clarify the requirements, and designers can interpret imperfect
requirements differently from stakeholders. Using formal languages does not resolve the situa-
tion, since defining a formal specification requires a very clear understanding of the statements
that should be formalized. Formal methods can only be used if the information we are using is
perfect, which makes it impossible to resolve imperfect information in this manner.

We conclude that imperfect information is inherently present in all requirement specifications.
By application of requirements analysis the imperfection can be resolved in parts of the
requirements, but not completely removed from the requirements specification. However,
since software development methods depend on the perfection of the requirements, all design
decisions that are taken, based on imperfect information that is assumed to be perfect, become
particularly vulnerable to redesign. In this section we extend the Artifact Trace Model with
fuzzy requirements, a technique that allows software engineers to capture imperfect require-
ments by means of fuzzy set based descriptions. In addition, the trade-off capabilities of the
Artifact Trace Model are extended such that it can work with these fuzzy requirements.

3.5.2 The Fuzzy Requirement Concept

We have identified that modern software design processes generally require perfect require-
ments for the design process to commence. However, as opposed to assuming and/or requiring
that the initial requirement specification only contains perfect information, a more fitting solu-
tion is to recognize imperfection where it occurs and capture its properties. By considering the
imperfect information in the design process and taking its potential consequences into account,
the software design is less vulnerable for the alternative interpretations of ambiguous state-
ments. An ambiguous statement in a requirement has multiple possible interpretations, most of
which do not correspond to the intentions of the stakeholder. Considering only one of the pos-
sible interpretations, when we are not sure it reflects the stakeholder’s interests, can then intro-
duce a considerable risk. Therefore, instead of intuitively assuming one interpretation that
should correspond to the stakeholder’s intentions, we propose to include a range of possible
interpretations in which the correct interpretations are most likely included. By including the
most likely interpretations in the design process, the resulting software system is more likely to
fulfil the desires of the stakeholder. To achieve this, we define the concept of a fuzzy require-
ment.

We assume that a crisp (i.e. perfect) requirement is an element of a universe U, where U is the
set of all possible requirements. For instance, specification of the set {A, B, C} corresponds to
the requirement specification: “I need requirements A, B and C to be fulfilled and no other
from the universe U”. In the case that one or more requirements in this set are imperfect, they
can be replaced by a fuzzy requirement. We define a fuzzy requirement to consists of the spec-
ification of a fuzzy set FS on U. The degree of membership of some element in the fuzzy set
describes the degree to which this particular element is considered as the correct interpretation
of the imperfect requirement at the current point in time. Therefore, this number is indicated by
the stakeholder, for instance during a meeting in which the alternatives are evaluated.

For example, suppose a stakeholder asks for “I. a convenient model” in the requirement speci-
fication. The requirement set representing this specification then is { I }. This requirement con-

Imperfect Information in Software Design Processes

44

tains an ambiguous statement since it is not clear what “convenient” exactly means, and as a
result this requirement is classified as imperfect. We can interpret this requirement in a number
of ways, such as:

1 An easily understandable model (0.4)

2 An easily modifiable model (0.6)

3 An easily portable model (0.8)

Each of these interpretations are evaluated by the stakeholders, with respect to how well they
think the respective interpretation reflects the imperfect requirement. Between parentheses we
have indicated the degree of membership in the fuzzy set, which represents this feedback from
the stakeholder. From this point in the requirement specification the imperfect requirement is
replaced with a fuzzy requirement containing the interpretations and their individual evalua-
tion. The requirement specification I is thus replaced by {1/0.4, 2/0.6, 3/0.8}.

3.5.3 Fuzzy Requirements in the Artifact Trace Model

In the fuzzy requirement concept an imperfect requirement is replaced by a number of possible
interpretations, each of which is tagged with value between zero and one corresponding to a
particular stakeholder interest. By treating these interpretations as normal “perfect“ require-
ments, software engineers are able to continue the development process as usual. However,
since these requirements are interpretations of a single fuzzy requirement, they are modeled
different from normal perfect requirements in the Artifact Trace Model. Traditional perfect
requirements are modeled by singular nodes in the Artifact Trace Model. A fuzzy requirement
essentially fulfils the same role in an Artifact Trace Model, since it represents a (vague)
request from the stakeholders. As such a fuzzy requirement is also included as a singular node.
However, instead of a traditional perfect requirement a fuzzy requirement node is related to
child artifacts that represent the alternative interpretations that have been identified. In addition
to each interpretation node the stakeholder interest values are attached. A typical picture for a
fuzzy requirement and its alternative interpretations is displayed in Figure 3.6.

In this figure, the three requirements, Req1, Req2 and
Req3, as defined in the previous paragraph, are depicted
as interpretation child nodes of the fuzzy requirement.
In addition, a value for the stakeholder interest rele-
vance is given as they have been indicated by the stake-
holders. From this point the interpretation nodes are
intermediate design artifacts for which we can now
trace the relationship between requirements and the
components that implement them in the same manner as
with perfect requirements. The four nodes in this pic-
ture represent the imperfect requirement.

For the continuation of the development process the
imperfect requirement is replaced by the fuzzy require-

ment and its interpretations, which are now considered in the same manner as perfect require-
ments. All the interpretations in the Artifact Trace Model can now be refined during the
development process like normal requirements, and the relations can be used to trace an inter-
pretation to the components that implement it. The resulting system design eventually will sup-
port all the perfect requirements as well as all the interpretations that have been defined for the
individual fuzzy requirements. However, for the system to fulfil the requirements not every
interpretation needs to be included until the completion of the design process and typically this
is also not desired by the stakeholders and the software engineers. During the course of the
development process both stakeholders and software engineers can come to a better insight on
the system, which enables them to clarify previously imperfect requirements. Since the Arti-

Req1

0.4

Req2

0.6
Req3

0.8

Fuzzy

Req

Rel:

0.8

Rel:

0.6

Rel:

0.7

Figure 3.6 Alternative Interpretations

Chapter 3: Decision Support for Imperfect Functional Requirements

45

fact Trace Model indicates which intermediate design artifacts are related to a particular inter-
pretation, it is possible to remove all “faulty“ interpretations from the model without removing
vital artifacts for other requirements. Note that according to this model, a crisp (non-fuzzy)
requirement is its own interpretation, which is indicated like a requirement with one interpreta-
tion that has a membership value of 1.

However, it can be desirable to remove interpretations from the Artifact Trace Model even
when there is no new insight on how to interpret imperfect requirements. This is especially the
case it is no longer feasible to maintain the broad design including fuzzy requirements from,
for example, a cost or workload perspective. The choice of which interpretations should be
maintained in the design is non-trivial since it is possible to derive a multitude of possible sys-
tems, each with their own cost and stakeholder interest values. For example, in Figure 3.6 the
fuzzy requirement has three interpretations Req1, Req2 and Req3. This fuzzy requirement can
now be (partially) implemented by implementing one or more of these interpretations. This
means that seven possible implementations can be identified: {Req1}, {Req2}, {Req3}, {Req1,
Req2}, {Req1, Req3}, {Req2, Req3} and {Req1, Req2, Req3} when we discard the possibility of
implementing none of the interpretations. Obviously, maintaining all interpretations adds to
the development effort and therefore will be more expensive, while implementing a limited set
of interpretations will result in a system that likely corresponds less to the desires of the stake-
holders. Note that this problem differs from the problem described in section 3.3.3, where the
problem was to determine the best subset of all requirements that needed to be implemented.
Here, the best subset of all interpretations must be found, which at least has one interpretation
for each fuzzy requirement.

To compare the possible designs that can be derived from the interpretations of a fuzzy
requirement, we use the membership values that are given to its interpretations. The goal func-
tion remains the same:

In section 3.3.3 we have introduced the concept of stakeholder interest, which can, for
instance, be relevance or urgency. A stakeholder interest was represented by a number that was
attached to a requirement. For a requirement specification that contains fuzzy requirements we
define all stakeholder interest values to be between zero and one. For fuzzy requirements for
which multiple interpretations are implemented, we define the stakeholder interest value to be
the algebraic sum of the resulting values of all its interpretations. The algebraic sum of two
numbers A and B is defined as AS(A, B)=A+B-AB. Note that this the same as the standard def-
inition for the probabilistic sum. Since membership values of fuzzy sets are always numbers
between zero and one, the algebraic sum ensures that fuzzy requirements do not have a stake-
holder interest value larger than one. The StakeholderInterest function becomes:

StakeholderInterest(x, S) =

where

StakeholderInterest’(x, fr) = AS { µ(x)r(x) | }

Here, FR is the set of all requirements, both fuzzy and crisp. For example, when we implement
the fuzzy requirement in Figure 3.6 by implementing the components for Req1 (0.4) and Req2

G S() µ x()StakeholderInterest x S,()
x

∑=

StakeholderInterest′ x fr,()
fr FR∈
∏

r fr∈ r S∈∧

Imperfect Information in Software Design Processes

46

(0.6), the stakeholder interest value of Req1 is 0.32 (0.4*0.8) and Req2 is 0.36 (0.6*0.6). The
overall value is AS(0.4*0.8, 0.6*0.6) = 0.565. If this value represents relevance, this means
that the implementation of the fuzzy requirement with these interpretations according to the
stakeholder has a relevance of 0.565. Obviously, other choices of the t-conorm for calculating
stakeholder interest values for fuzzy requirements can be used, such as the maximum, the
bounded sum (min(1, A+B)) or the drastic union [Klir1995]. Each of these operators can be
used in the situation that demands the particular behavior. Generally, the maximum operator is
used, however for our example this would mean that we can not distinguish between systems
that include only the most relevant interpretation and systems that include additional interpre-
tations. Therefore the algebraic sum was chosen.

Since the defuzzification of the fuzzy requirements is done with respect to the entire system,
we define the value of a stakeholder interest for a complete system to be the product of all val-
ues of the individual requirements that are implemented. By this definition it becomes impera-
tive that all perfect requirements are implemented and that at least one interpretation for each
fuzzy requirement is implemented, since otherwise the multiplication will contain a zero and
as a result the overall value will become zero. To demonstrate the comparison of system design
that can be derived from fuzzy requirements, suppose we have the requirement specification
that is depicted in Figure 3.7.

In this picture there are two fuzzy requirements, Fuzzy Req1 and Fuzzy Req2. Fuzzy Req1 has
two interpretations, Int1.1 and Int1.2, and Fuzzy Req2 has three interpretations, Int2.1, Int2.2 and
Int2.3. Their membership degrees and their relevance are included in the picture. Finally, Req3
is a crisp requirement with relevance 0.9. Suppose we want to compare the system design that
includes { Int1.2, Int2.1, Int2.3, Req3 } and the system design that includes { Int1.1, Int1.2, Int2.3,
Req3 }. The overall relevance value for the first system is computed as follows: the relevance
of Fuzzy Req1 is 0.48. For Fuzzy Req2 the relevancy is AS(0.4, 0.56), which equals 0.736.
Finally, for Req3 the relevancy is equal to 0.9. The relevancy for the entire system now is the
result of the multiplication of these three values: 0.48*0.736*0.9 = 0.318.

Computed in analogue fashion the overall relevance for the second system is 0.730*0.56*0.9 =
0.368. Based on relevance therefore the second system would be a better choice. Typically in
this type of trade-off other considerations will be included such as the cost of the required com-
ponents. In section 3.5.4 we elaborate on the inclusion of fuzzy requirements in the trade-off
analysis of the Artifact Trace Model.

In the example above we have focused on a single stakeholder interest evaluation that each
interpretation has received. Obviously, it is possible to attribute multiple membership degrees
to an interpretation, such as one for relevance, one for urgency, etcetera. Using the approach
defined above this means the evaluation of a system will result in an overall value for each

Int2.1

0.5

Int2.2

0.7
Int2.3

0.8

Fuzzy

Req2

Rel:

0.8

Rel:

0.6

Rel:

0.7

Int1.1

0.6

Int1.2

0.8

Fuzzy

Req1

Rel:

0.8

Rel:

0.6

Req3

Rel:

0.9

Req3

Figure 3.7 A fuzzy requirement specification

Chapter 3: Decision Support for Imperfect Functional Requirements

47

stakeholder interest. The combination of these values into an overall evaluation can be
achieved by, for example, a weighted average that reflects the preferences of the stakeholder
with respect to the interests.

3.5.4 Trade-off Analysis with Fuzzy Requirements

In the previous section we have identified that at times it can be desirable to remove interpreta-
tions from the Artifact Trace Model. This can be caused by either resolving imperfection or a
necessity to minimize the remaining design effort. In the first case essentially an iterative
design step is initiated, where a change in the available information facilitates a new design. In
the case that imperfection is resolved to an interpretation that is present in the design, the itera-
tive step exists of removing the superfluous interpretations of the fuzzy requirement. The
traces in the Artifact Trace Model can be used to remove intermediate design artifacts that are
no longer needed. When the correct interpretation is not part of the system, the trade-off analy-
sis of the Artifact Trace Model can be used to minimize to a system with the most desirable
properties. Therefore, the assessment of system designs can be used to coordinate the incre-
mental steps of the software development process. For the purpose of assessing the system
designs that can be derived from interpretations of a single fuzzy requirement, we have defined
how the stakeholder interest is computed for fuzzy requirements. These definitions enable us
to reuse the optimization definitions we have made in section 3.3.3, without the need for addi-
tional definitions. As indicated earlier, typically the assessment of the system is a trade-off
between stakeholder interests and the expected cost for the implementation of the system,
which means the optimization configurations of cost-minization and stakeholder interest-max-
imization remain applicable.

Both configurations search for a particular optimal system among all possible systems that can
be derived from the set of crisp and fuzzy requirements. Since the perfect requirements all
need to be implemented, the amount of interpretations for the fuzzy requirements present in the
Artifact Trace Model determine the complexity of the optimization. The amount of possible
designs that can be derived from a fuzzy requirement is equal to the number of subsets that can
be taken from the set of interpretations minus one (since every fuzzy requirement must be
implemented by at least one interpretation the empty set is not allowed). In addition, each of
these possible subsets needs to be combined with each possible subset of the other fuzzy
requirements, which means the amount of system designs grows exponentially with the
amount of interpretations for the fuzzy requirements. The amount of system designs that can
be derived from an Artifact Trace Model with n fuzzy requirements equals:

, where is the amount of interpretations for fuzzy requirement i

For the application of the optimization in industrial settings, an exponential complexity
becomes unmanageable. To reduce the complexity of the optimization, we propose the use of a
heuristic approach when evaluating the system designs. This approach is based on the system-
atic removal of alternative interpretations of fuzzy requirements until a particular stopping cri-
terion is fulfilled. We distinguish two cases:

Cost minimization

In the case of cost minimization, we take the system that contains all interpretations as the
starting point. This system satisfies all restrictions on the stakeholder interest values, since
these now have their highest possible value. Now, all systems that result from removing one of
the interpretations are evaluated. From all the systems that satisfy the restrictions on the stake-
holder interest values, the system is selected that has the lowest costs. The removal of interpre-
tations for this system is repeated. The removal of interpretations and the selection of systems

2
mi

1–()

i 1=

n

∏ mi

Imperfect Information in Software Design Processes

48

is done until no interpretation can be removed without the resulting system violating one or
more restrictions. The current system then is the heuristically cost-optimal system.

Stakeholder Interest Value Maximization

The second case, an aggregated stakeholder interest value is maximized while the cost does not
exceed a particular threshold. In this case, we also start with the system that contains all inter-
pretations. At this point the cost will exceed the threshold and all the restrictions on stake-
holder interest values are satisfied. All systems that result from removing one of the
interpretations are evaluated. The system that satisfies all restrictions and has the highest value
G(S) for the stakeholder value of interest is selected. This is repeated, until a system is found
for which the costs lie below the threshold. This system then is the heuristically optimal system
for the stakeholder interest value.

The complexity of the heuristic optimization is reduced since at every step one interpretation is
removed, which reduces the amount of systems in the next step. In a worst case scenario this
heuristic approach is faced with a quadratic complexity.

3.6 The Traffic Management System Revisited

3.6.1 Architecture Design with Fuzzy Requirements

The design process in section 3.4.2, at first glance, does a fairly good job at designing the sys-
tem architecture from the initial requirements. However, the initial requirements are imperfect
in several definitions. For example, the second requirement prescribes that there must be an
explicit and convenient model of tasks and scenarios. However, the term “convenient” can
imply completely different solutions from the user point-of-view and the software designer
point-of-view. Also, in the fourth requirement, for instance, it is described that the system must
be able to communicate with the roadside system. However, it is not described what kind of
communication is needed, and whether this is single- or bidirectional. Whether the resulting
architecture reflects the stakeholder desires therefore very much depends on whether the soft-
ware engineers have chosen the correct interpretations for the imperfection.

For our example, suppose the software architects have identified imperfection in the functional
requirement specification of the Traffic Management System. In particular, the requirements 2,
4, 5 and 6 contain much ambiguity in their description, therefore the software architects decide
to replace them with fuzzy requirements as described in the previous section. In addition, in
accordance with the stakeholders, the interpretations are tagged with a number between 0 and
1 (i.e. its membership value). Furthermore, the keep the example understandable, all interpre-
tations receive a relevance of one. In Table 3.3, the requirement specification including fuzzy
requirements is described.

Chapter 3: Decision Support for Imperfect Functional Requirements

49

In Table 3.3 the initial requirement specification for the Traffic Management System is indi-
cated by the grey rows. Additionally, for the imperfection identified in requirements 2, 4, 5 and
6 the three interpretations are described together with the membership value in the second col-
umn. It can be seen that the interpretations of the fuzzy requirements are taken from multiple
perspectives, and generally the stakeholder evaluation reflects this. For example, for require-
ment 2 the term “convenient” is interpreted as either “extensible“, “understandable“ or “porta-
ble“. From the stakeholder perspective the two first interpretations make more sense than the
third interpretation, which is more applicable for the software design team. This is reflected in
the stakeholder evaluation, since the membership value is higher for the first two interpreta-
tions. The actual values in this table could have been defined in many different ways. For
example, if the number results from a questionnaire posed to all stakeholders, a value of 0.8
can correspond to the statement that 8 out of 10 stakeholders identified the interpretation to be
applicable. Note that this does not necessarily mean that other interpretations are not applica-
ble for the same stakeholder, which makes this evaluation distinctly different from a probabi-
listic model.

Table 3.3 Interpretations of Imperfect Requirements

Requirement
Member-

ship

1 The TMS must support displaying relevant information to the users of the

TMS

1

2 There should be an explicit, convenient model of tasks and scenarios

2.1 There should be an easily extensible model of tasks and scenarios 0.8

2.2 There should be an easily understandable model of tasks and scenarios 0.9

2.3 There should be an easily exportable and portable model of tasks and sce-

narios

0.6

3 The system must support action coordination for optimal normalization of

traffic flow

1

4 The system should support task allocation

4.1 The system should support user extensible task allocation profiles 0.6

4.2 The system should support task allocation as individual task blocks 0.2

4.3 The system should support task allocation with automated decision support 0.9

5 Contextual Information should be accessible

5.1 Contextual Information should be accessible internally in a generic format 0.7

5.2 Contextual Information should be accessible externally at an interface in a

generic format

0.5

5.3 Contextual Information should be accessible both internally and externally

at an inter-face in a generic format

0.3

6 The TMS should be able to communicate with the roadside system

6.1 The Traffic Management System should be able to communicate with the

roadside system unidirectionally

0.3

6.2 The Traffic Management System should be able to communicate with the

roadside system with flexible support for separate data formats

0.6

6.3 The Traffic Management System should be able to communicate with the

roadside system for realtime video

0.8

Imperfect Information in Software Design Processes

50

As in the previous design of the Traffic Management System the software architects start by
identifying the problems that should be solved for each individual requirement. At this stage
the fuzzy requirements are replaced by the interpretations, and these interpretations are treated
as “perfect“ requirements. At a later stage the fuzzy requirements are used for the optimization
of the fuzzy design. In Table 3.4 the identified problems for each requirement are described.

In Table 3.4, the problems are defined, which should be resolved to implement the require-
ments. Note that the interpretations replace the actual fuzzy requirements in this design step.

Table 3.4 From Requirements to Problems

Req. Problems to be solved

1 P1.1 How do we display information?

P6.1.2

2.1 P2.1.1 How do we support a generic model that captures tasks and scenarios?

P2.1.2 How do we express Tasks and Scenarios in an extensible manner?

2.2 P2.2.1 How do we capture tasks and scenarios in an easily understandable manner?

P2.2.2 How do we support Tasks and Scenarios while maintaining system performance?

2.3 P2.3.1 How do we capture Tasks and Scenarios in a portable and exportable manner?

P2.1.2

3 P3.1 How do we normalize traffic flow with actions?

P3.2 How do we rate normalizations with respect to each other?

4.1 P4.1.1 How do we support a generic Task Allocation Support Model?

P4.1.2 How do we offer this information?

P2.1.2

4.2 P4.2.1 How do we offer a highly composable Task Allocation Support Model?

P4.2.2 How do we extract the information from the model?

P4.1.2

4.3 P4.3.1 How do we provide reasoning support for Task Allocation?

P4.3.2 How do we extract this information from the Reasoning System?

P4.1.2

5.1 P5.1.1 How do we define a generic model that captures contextual information for internal

usage?

P5.1.2 How do we make this generic model available inside the system?

5.2 P5.2.1 How do we support interaction with the system?

P5.2.2 How do we define a generic model that captures contextual information for external

usage?

5.3 P5.1.2, P5.2.1

P5.3.1 How do we define a generic model that captures contextual information for internal

and external usage?

6.1 P6.1.1 How do we realize the unidirectional communication?

P6.1.2 How do we make the internal data available?

6.2 P6.2.1 How do we achieve dynamic switching of communication protocols?

P6.1.2

6.3 P6.3.1 How do we realize a constant and stable communication stream?

P6.1.2

Chapter 3: Decision Support for Imperfect Functional Requirements

51

At this point, also the membership degrees are not considered during the design step. These
will be used during the optimization of the Artifact Trace Model. The subsequent steps corre-
sponding to the refinements for the crisp requirements, where problems are refined to solu-
tions, and solutions to components can be found in Appendix A, in Table A.6 and Table A.7
respectively. When the relations between the intermediate design artifacts are traced using the
Artifact Trace model this results in the model depicted in Figure 3.8. In this figure, the nodes
labeled “OR“ depict the imperfect requirements, and the fact that at least one of their interpre-
tations must be implemented. In addition to the artifact relations also the estimated implemen-
tation effort for each component is indicated in person-months. Compared to the model in
Figure 3.4 this model is more complex, which means that the extra interpretations have intro-
duced additional effort for the design of the Traffic Management System. However, since it is
possible to derive multiple systems from the Artifact Trace Model based on the added interpre-
tations, the chance for a complete redesign is reduced and therefore also the added costs for
these iterations.

Im
p
erfect In

fo
rm

atio
n
 in

 S
o
ftw

are D
esig

n
 P

ro
cesses

5
2

R
5.1

R
5.2

R
5.3

R
2.1

R
2.2

R
2.3

R
4.1

R
4.2

R
4.3

R
6.1

R
6.2

R
6.3

R
3

R
1

P
5.1.1

P
5.1.2

P
5.2.1

P
5.2.2

P
3.1

P
3.2

P
1.1

OROR OR OR

Over
all

0.7 0.5 0.30.8 0.9 0.6 0.6 0.2 0.9 0.3 0.6 0.8

P
5.3.1

P
2.1.1

P
2.1.2

P
2.2.1

P
2.2.2

P
2.3.1

P
4.1.1

P
4.1.2

P
4.2.1

P
4.3.1

P
6.1.1

P
6.1.2

P
6.2.1

P
6.3.1

P
4.2.2

P
4.3.2

S
5.1.1

S
5.1.1

S
5.1.2

S
5.3.1

S
5.2.1

S
5.2.1

S
5.2.2

S
2.1.2

S
2.2.1

S
2.2.2

S
2.3.1

S
2.3.1

S
4.1.1

S
4.2.1

S
4.2.2

S
4.3.1

S
4.3.2

S
6.1.1

S
6.1.2

S
6.2.1

S
6.3.1

S
3.1

S
3.2

S
1.1

C
5.1.1

C
5.1.1

C
5.1.1

C
5.1.2

C
5.2.1

C
5.2.1

C
5.2.2

C
5.3.1

C
2.1.2

C
2.2.1

C
2.2.2

C
2.3.1

C
2.3.1

C
4.1.1

C
4.2.1

C
4.2.2

C
4.3.1

C
4.3.2

C
6.1.1

C
6.1.2

C
6.2.1

C
6.3.1

C
3.1

C
3.2

C
1.1

XIV
2

XV
0.5

XVI
4

XVII
0.5

XVIII
1

XIX
0.1

XX
0.5

XXI
1

II
3

III
1

IV
4

V
1

VI
3.5

IX
1

X
2

XI
3

XII
2

XIII
3

XXII
4

XXIII
3

XXIV
2

XXV
2

VII
2

VIII
2

I
3

R
5.1

R
5.2

R
5.3

R
2.1

R
2.2

R
2.3

R
4.1

R
4.2

R
4.3

R
6.1

R
6.2

R
6.3

R
3

R
1

P
5.1.1

P
5.1.2

P
5.2.1

P
5.2.2

P
3.1

P
3.2

P
1.1

OROR OR OR

Over
all

0.7 0.5 0.30.8 0.9 0.6 0.6 0.2 0.9 0.3 0.6 0.8

P
5.3.1

P
2.1.1

P
2.1.2

P
2.2.1

P
2.2.2

P
2.3.1

P
4.1.1

P
4.1.2

P
4.2.1

P
4.3.1

P
6.1.1

P
6.1.2

P
6.2.1

P
6.3.1

P
4.2.2

P
4.3.2

S
5.1.1

S
5.1.1

S
5.1.2

S
5.3.1

S
5.2.1

S
5.2.1

S
5.2.2

S
2.1.2

S
2.2.1

S
2.2.2

S
2.3.1

S
2.3.1

S
4.1.1

S
4.2.1

S
4.2.2

S
4.3.1

S
4.3.2

S
6.1.1

S
6.1.2

S
6.2.1

S
6.3.1

S
3.1

S
3.2

S
1.1

C
5.1.1

C
5.1.1

C
5.1.1

C
5.1.2

C
5.2.1

C
5.2.1

C
5.2.2

C
5.3.1

C
2.1.2

C
2.2.1

C
2.2.2

C
2.3.1

C
2.3.1

C
4.1.1

C
4.2.1

C
4.2.2

C
4.3.1

C
4.3.2

C
6.1.1

C
6.1.2

C
6.2.1

C
6.3.1

C
3.1

C
3.2

C
1.1

XIV
2

XV
0.5

XVI
4

XVII
0.5

XVIII
1

XIX
0.1

XX
0.5

XXI
1

II
3

III
1

IV
4

V
1

VI
3.5

IX
1

X
2

XI
3

XII
2

XIII
3

XXII
4

XXIII
3

XXIV
2

XXV
2

VII
2

VIII
2

I
3

F
ig
u
re
 3
.8

 A
rtifa

c
t T

ra
c

e
 M

o
d

e
l o

f th
e

 T
M

S
 w

ith
 fu

z
z

y
 re

q
u

ire
m

e
n

ts

Chapter 3: Decision Support for Imperfect Functional Requirements

53

3.6.2 Optimization of Traffic Management System Architecture

As indicated in Section 3.5.3, not every interpretation needs to be implemented for each fuzzy
requirement, which means that multiple systems can be derived from the Artifact Trace Model.
To analyze how the refined architecture in Figure 3.5 compares to the possible systems that
can be derived from this Artifact Trace Model, we will optimize the system design both for
cost and relevance in the next section. When we take as a reference point the system from sec-
tion 3.4, we see that the requirements that are implemented by these components are { R1.1,
R2.3, R3.1, R4.3, R5, R6 }. When we determine the overall relevance according to the stake-
holder evaluation of these interpretations, this results in a relevance of 0.114. In addition, the
cost for implementing all the components for this system is 33.1 man-months. In this para-
graph we examine whether it is possible to derive systems from the fuzzy requirement design
that either offer lower costs or higher relevance.

A Cost-Minimized Architecture for the Traffic Management System

First, using the optimization capabilities of the Artifact Trace Model, we identify the system
with minimal costs. However, since our reference system has a relevance of 0.114, we require
our optimized system to have a relevance of at least 0.114. This results in the following optimi-
zation configuration:

Cost(S) = Min { Cost() | , 0.114 }

After optimization, the design that results from the Artifact Trace Model implements the fol-
lowing requirements: { R1, R2.1, R3, R4.1, R5.1, R5.2, R6.1 }. To implement this system the
following components are needed: { I, II, VII, VIII, IX, XIV, XV, XVI, XVII, XVIII, XIX, XX,
XXII, XXIII }. When we place these components into the abstract architecture of the ATM, we
get the picture of Figure 3.9.

S′ S′ P R()∈ Relevance S′() ≥

Imperfect Information in Software Design Processes

54

In this figure, the identified components from the optimization are placed in the abstract archi-
tecture. In this figure, the components represent implementation units, which are placed into
the respective parts of the abstract architecture. From this refined architecture, it can be seen
that the cost minimization in comparison to Figure 3.5 is achieved by choosing different inter-
pretations for both fuzzy requirement 2 and 4. Additionally, the relevance is raised by includ-
ing two additional interpretations for requirement 1. As a result, this system has a relevance of
0.122, which adheres to our constraint of minimally 0.114. Our optimization criterion, cost, for
this system is equal to 26.6, which is considerably lower than the 33.1 for the “crisp“ system in
section 3.4. We can conclude that the cost optimal system that is found by using the Artifact
Trace Model not only exhibits lower costs than the crisp system, but also has a better rele-
vance.

A Relevance-Maximized Architecture for the Traffic Management System

Second, we aim to maximize relevance, but like in the previous optimization the system should
not exceed the cost of our reference system, which is 33.1 person-months. This results in the
following optimization configuration:

Relevance(S) = Max { Relevance() | , 33.1 }

The Artifact Trace Model optimization proposes a system that implements the following
requirements: { R1, R2.1, R3, R4.3, R5.1, R6.1, R6.2, R6.3 }. For the implementation of these
requirements the following components are needed: { I, II, VII, VIII, XII, XIII, XIV, XV, XVI,

Display Formatter

Communication Interfaces

Contextual

Info Interface

Traffic Management

Display Interface

Task Allocation

Interface

Action Coordinator

Task Allocator

Task & Scenario ModelContextual Information Model

XIV. XML Schema

Contextual Info

II. XML Schema

Tasks & Scenarios

IX. XML Schema

Task Allocation

XVI. Open Source

XML Parser Component

XVII. XML Communication

Component

XVIII. Corba Comm.

Components

XIX. SQL Query

Component

XX. Database +

Serializer Component

XXII. Corba based

Communication Component

XXIII. Uniform

Communication Interface

VII. Relocation

Strategy Component

VIII. Strategies Comparison

And Selection Component

I. Definable Views on

Traffic Data Component

XV. Common File

Format Definition

XVII. XML Communication

Component

XVI. Open Source

XML Parser Component

XVI. Open Source

XML Parser Component

XV. Common File

Format Definition

XV. Common File

Format Definition

Figure 3.9 Cost minimized TMS architecture

S′ S′ P R()∈ Cost S′() ≤

Chapter 3: Decision Support for Imperfect Functional Requirements

55

XVII, XXII, XXIII, XXIV, XXV }. The refined architecture of the resulting system is depicted in
Figure 3.10:

In this figure, the identified components from the optimization are placed in the abstract archi-
tecture. The refined architecture in this picture differs considerably from the refined architec-
ture in Figure 3.5. Especially for requirement 4, multiple interpretations have been included,
which increases the relevance of this system. The relevance of the system is 0.476 with the cost
of implementing the components being 33.0 person-months. This means that by modeling
alternative interpretations for the fuzzy requirements, it is possible to find a design for the
Traffic Management System that exhibits a considerably higher relevance, while the costs for
this design are actually lower than for the crisp system in section 3.4.

3.7 Related Work

3.7.1 Traceability of Intermediate Design Artifacts in Software Engineering

In our approach we define a tracing model specifically aimed at capturing relationships
between intermediate design artifacts. Requirements tracing is a well-defined area and has
resulted in numerous techniques for tracing software design processes. Each of these
approaches is aimed at different uses, and is specifically suited to achieve its purpose. For
instance, a tracing approach based on hypertext [Kaindl1993] is primarily aimed at easily
browsing through documentation by use of hyperlinks. Other approaches are aimed at specifi-
cally linking elements together to determine coverage and balance of intermediate design
steps, such as trace matrices [Davis1990] and matrix sequences [Brown1991]. Another use of
trace models is to analyze the fulfilment of requirements based on the structure of the require-

Display Formatter

Communication Interfaces

Contextual

Info Interface

Traffic Management

Display Interface

Task Allocation

Interface

Action Coordinator

Task Allocator

Task & Scenario ModelContextual Information Model
XIV. XML Schema

Contextual Info
II. XML Schema

Tasks & Scenarios

XV. Common File

Format Definition

XVI. Open Source

XML Parser Component

XVII. XML Communication

Component

XII. Task Allocation

Expert System

XIII. Text based Report

Extractor & Interface

XXII. Corba based

Communication Component

XXIII. Uniform

Communication Interface

XXIV. Dynamic Protocol

Support Component

VII. Relocation

Strategy Component

VIII. Strategies Comparison

And Selection Component

I. Definable Views on

Traffic Data Component

XV. Common File

Format Definition

XVI. Open Source

XML Parser Component

XV. Common File

Format Definition

XXV. Video Streaming

Support Component

Figure 3.10 Relevance maximized TMS architecture

Imperfect Information in Software Design Processes

56

ment trace. This is, for instance, done by assumption-based truth maintenance networks
[Smithers1991] and constraint networks [Bowen1990]. While all these approaches have spe-
cific uses, it is not possible to apply these approaches to work with imperfect inputs and to
optimize system designs. This is due to the specific attributes that are needed in the trace
model, which are mostly only in part captured by the tracing models.

3.7.2 Decision Models of Software Processes

To address the complexity of developing software systems, many design methods have been
proposed and expanded upon, such as Structural design [Yourdon1979] and Rational Unified
Process [Jacobson1999]. Each of these methods emphasize different aspects and generally dif-
fer from each other with respect to the adopted models, such as functional models, data ori-
ented models, etcetera. In addition to structuring the consecutive phases of software
development, the methods propose a large set of explicit and implicit heuristics rules, which
can differ per method. In [Tekinerdogan2002], based on their heuristics, architecture design
methods are classified as artifact-driven, use-case-driven and domain-driven. In the artifact-
driven approaches, software is designed from the perspective of the available software arti-
facts. For example, in the OMT method, a class is identified using the rule: “If an entity in the
requirement specification is relevant then select it as a tentative class”. In the use-case driven
approaches, use cases are applied as the primary artifacts in designing software systems. For
example, in the RUP, analysis packages, which are the primary means to decompose software,
are identified with the rule: “Identify the analysis packages if use cases are required to support
a specific business process”. In the domain-driven approaches, the fundamental software com-
ponents are extracted from the concepts of the domain model. An extensive number of soft-
ware engineering environments have been proposed to support software engineering methods.
Most environments provide model editing, consistency checking, version management and
code generation facilities. There is a considerable amount of research on process modeling
[Kaiser1994] [Finkelstein1994], as well as research in the field of assisting software designers
with automated reasoning mechanisms. However, formalizing design heuristics and providing
some sort of expert system support during the design process is not exploited well. This is
because most approaches can not deal with imperfect information in the design process. In
[Aksit2001], a design heuristics support approach based on fuzzy logic is proposed. However,
this work does not address the same problem of imperfect information as defined in this chap-
ter.

3.7.3 Imperfect Information in Design Processes

Over the years, there have been a number of approaches to support imperfection in design pro-
cesses, but only a relatively small amount has focused on the area of software design. How-
ever, the existing approaches are mostly based on fuzzy logic and fuzzy set theory. In
[Aksit2001a], partial applicability of design heuristics in the OMT development process is
supported by a fuzzy logic based representation. The inconsistency is controlled and main-
tained by fuzzy reasoning techniques, until it can be resolved by new design inputs. In
[Lee2003], imprecise functional requirements are captured used a fuzzy logic framework.
Each intermediate design step, the applicability of the design can be assessed with respect to
the requirements in a manner similar to proving an invariant over a piece of code. The resulting
value then indicates to which degree the requirement holds.

Also, more generic models have been proposed for the support of design processes. An
approach to model imprecision in design inputs is proposed in [Law1995]. This imprecision is
captured using fuzzy set theory, and the imprecision is then used to explore the possible design
alternatives and the evaluation of design alternatives. To describe the sequence of decisions, in
[Liu2005] an extension to decision trees is proposed. In this decision tree the imprecise attitude

Chapter 3: Decision Support for Imperfect Functional Requirements

57

of the decision maker with respect to risks is considered using techniques from fuzzy logic,
and combined with the decision optimization algorithms of probabilistic decision trees.

3.8 Discussion
Can imperfection in functional requirement specifications be avoided with more complex
specification and analysis methods?

The approach proposed in this chapter addresses imperfection in functional requirement speci-
fications by means of fuzzy requirements. An alternative approach could lie in the prevention
of imperfection in functional requirement specifications, so that the imperfection will not man-
ifest itself in the design inputs. In the related work already a number of approaches were iden-
tified, which facilitate the definition of requirement specifications in order to achieve this goal.
However, imperfection in functional requirement specifications can not always be resolved in
this way, for instance when the required information is not available. In this case the imperfec-
tion can not be prevented by additional deliberation. The failure of the waterfall-model, and the
general acceptance of iterative and agile approaches is a clear illustration of this fact. Typi-
cally, only in specific or isolated cases, where the problem domain is very well understood, it
is possible to come to such precise specifications. Since imperfection is an intrinsic property of
software development, it is not sufficient to facilitate the requirement definition process.

Can imperfection in functional requirement specifications be avoided by more experi-
enced designers?

Complementary to the discussion point in the previous section, increased insight and experi-
ence in the definition of functional requirements can be very useful, By training the architect in
recognizing imperfection in design input, the imperfection can be removed and/or resolved
before the design process is continued. However, as was already mentioned above, imperfec-
tion is an intrinsic part of the software development process. While using more experienced
designers will increase the accuracy of these estimations, they will still be prone to imperfec-
tion due to the lack of information. Nonetheless it will be very useful for architects to identify
imperfect information when it occurs, since this will make it possible to treat the imperfection
more appropriately.

How do we define stakeholder interest values that accurately represent the current situa-
tion?

The fuzzy requirement concept, which has been presented in this chapter, is based on the defi-
nition of stakeholder interest values that describe the imperfection. To ensure that the results of
the optimization with the Artifact Trace Model are relevant, the stakeholder interest values
should accurately represent the imperfection in the requirement specification. However, there
is no standard manner to determine these stakeholder interest values. Nonetheless, in our early
experiments the definitions were quite natural for the users, since the notion fits the state of
mind of the software designer fairly well. By capturing domain specific information and user
experience with the approach, and using these definitions as a guideline, the use of fuzzy func-
tional requirements can be facilitated. Also the support of tools can help greatly, since it facili-
tates experimentation with specific fuzzy sets and probability distributions.

Imperfect Information in Software Design Processes

58

Does the added effort of fuzzy functional requirements and the Artifact Trace Model
scale up to industrial application?

With the inclusion of alternative interpretations using fuzzy requirements, the effort for
designing software systems is increased. It is necessary to include more requirements in the
design, and additionally the relationships between intermediate design artifacts must be admin-
istrated. Furthermore, the optimization based on the Artifact Trace Model in an industrial set-
ting can become computationally cumbersome. By supporting the capturing of the design
decisions in an automated tool, the additional effort is minimized. In this tool also the compu-
tational support for comparing different types of imperfect information is included, which min-
imizes the computational overhead for the software engineer. On a larger scale, the approach is
intended to minimize the impact of imperfect information, which means that the added effort
in the early stages of the development process is compensated by a lower need for complex
adjustments in the software design.

3.9 Conclusions
In this chapter, imperfect information in functional requirements is identified as an important
problem in the design of software systems. This can lead to the development of software sys-
tems that do not reflect the stakeholder’s intentions, since requirements that contain imperfec-
tion can be misinterpreted by software engineers.

We have shown that imperfect functional requirements can be managed by capturing the
ambiguous nature of the imperfection. To accomplish this, we capture the possible interpreta-
tions of the imperfect information in fuzzy sets, and treat these fuzzy requirements in the same
way as traditional requirements. The membership degrees of the interpretations in the fuzzy
requirements can be used to model particular interests of stakeholders, such as desirability or
applicability. In addition, we have shown that the fuzzy requirements can be incorporated and
traced in the Artifact Trace Model, and thereby benefit from the optimization capabilities of
this model. The interpretations of fuzzy requirements can be traced in the same manner as per-
fect requirements, and the optimization can be used to determine, for instance, cost-minimized
or relevance-maximized system architectures. This makes the design process more flexible and
resilient to the occurrence of new insights alongside the development process. When these new
insights correspond to interpretations included in the design, the system can be adjusted easily.
In addition, the assessment and optimization capabilities of the Artifact Trace Model can be
used to adjust the design of the software system and steer the incremental design steps of the
development process. With this model, a new approach to specifying functional requirements
has been defined. Instead of trying to specify the requirements in minute detail, the approach
offers the possibility to capture the uncertainty that exists with the stakeholders. With the Arti-
fact Trace Model the inclusion and consideration of such imperfection in the development pro-
cess is facilitated and supported.

Our approach was demonstrated by applying the approach to the Traffic Management System
example, where four of the initial requirements contain imperfect information. In the tradi-
tional evaluation method, one interpretation for each requirement was used. When it was eval-
uated using our approach, not considering imperfection resulted in a system design that was
considerably more expensive and less adequate than the optimized systems that resulted from
our approach. In chapter 6, we present tooling support for the Artifact Trace Model approach,
which can be used to trace artifact refinement and to perform trade-off analysis between stake-
holder interests and for instance implementation effort. In chapter 7 we explore the applicabil-
ity and usability of the approach by applying the tooling in a pilot study. The results of this
pilot study are used to evaluate the approach proposed in this chapter.

Chapter 4: Specification and Evaluation of Imperfect Quality Requirements and Estimations

59

C H A P T E R

Chapter 0SPECIFICATION AND EVALUATION OF IMPERFECT
QUALITY REQUIREMENTS AND ESTIMATIONS

4.1 Introduction
In the previous chapter, we have defined an evaluation model that facilitates the modeling of
and reasoning with imperfect information in functional requirement specifications. However,
the occurrence of imperfect information is not limited to functional requirements. The specifi-
cation of precise quality requirements is equally difficult, since these requirements are also
defined in the early stages of the software development process. Since both stakeholders and
software engineers have a partial view of the completed system, the correct assessment of the
desired quality attributes is hampered. In a similar manner, this partial view complicates the
quality based assessment of alternative system designs for software engineers. As a result,
design decisions need to be reconsidered at later stages of the development process, when new
insights are attained. Consequently, delivering software systems that fulfil all quality require-
ments of the stakeholders is very difficult, if not at all impossible. To address these problems,
we define a method for tracing design decisions with support for imperfect quality require-
ments and estimations. To model and compare imperfect requirements with imperfect estima-
tions, we present fuzzy and stochastic techniques. The approach is illustrated by an industrial
example based on a storm surge barrier system.

“Any area is open to my speculation if it does what you've
hired me to do," Hawat said. "I am a Mentat. You do not
withhold information or computation lines from a Mentat.”

- From Frank Herbert’s Dune [Herbert2005]

Imperfect Information in Software Design Processes

60

4.2 Quality-based Design Alternative Selection

4.2.1 Problem Statement

In many practical software projects, a number of design decisions are taken in a sequential
manner. Typically, for each design issue several candidate solutions or design alternatives are
considered. These design alternatives are evaluated based on the quality expectations, in order
to establish an ordering among them. The design alternative that offers the best quality is then
selected to fulfil the design issue in the design of the system.

This activity of evaluating and selecting design alternatives based on their expected quality
attributes is hindered by the presence of imperfect information. The evaluation of design alter-
natives is typically performed in the early stages of the design process. At this point, the soft-
ware engineer only has a partial, abstract view of what the resulting system will be. As a result
of this abstract view, the quality of a system that results from selecting a candidate solution is
largely unclear. The quality estimations that are used in the evaluations can be considered to be
imperfect. Nonetheless, these estimations are expressed using traditional numerical expres-
sions, which do not capture the imperfection appropriately. Further, these numerical expres-
sions are used to establish the ordering among the design alternatives, which makes the
ordering vulnerable to the unmodeled imperfection in the quality estimations. The selection of
design alternatives is hindered further, since the system is supposed to fulfil quality require-
ments. As with functional requirements, the definition of these quality requirements can con-
tain imperfect information. Since quality requirements are defined early in the development
process, it is difficult to provide the restrictions with sufficient precision. As a result, the qual-
ity requirements are likely to be changed or refined over time.

The presence of imperfect information in quality estimations as well as quality requirements
directly influences the uniform and systematic evaluation of candidate solutions based on their
quality attributes. However, since this imperfection is not captured and considered during the
evaluation activity, it is likely that the established ordering of the candidate solutions does not
reflect the ordering based on the actual resulting quality. Nonetheless, the software design pro-
cess is continued after each decision, assuming that all these orderings were correct. Therefore,
imperfect information can cascade through a sequence of design decisions, before the imper-
fection can be resolved by new insights. The arrival of new insights during the software devel-
opment process can invalidate (parts of) the design of the software system. In most software
design processes, the correction of designs is facilitated by means of iterative design cycles. At
the moment the current design is no longer satisfactory, the design process will perform an
iterative correction on the design. However, in chapter 1 we have established that for success-
ful iterative design four requirements must be fulfilled: the All-Always-Requirement, the All-
at-Once-Requirement, the All-Isolation-Requirement and the All-Infinite-Requirement. As a
result of these requirements, iterative design is not capable of resolving the consequences of
imperfect information effectively. In addition, since the nature of imperfect information as
well as the impact of using this information in the evaluation process is not well understood,
adjusting the design with iterative steps is not done in a systematic manner, which makes
incremental design even less effective.

In this chapter, we propose a tracing model, with which it is possible to describe the design
issues that have been resolved, the order in which they have been addressed and the design
alternatives that have been considered. Our model is used to systematically explore the designs
that are available based on the evaluations of individual design solutions. Additionally, our
approach includes a configurable algorithm, to reflect different managerial interest for the cor-
rection in the design process, such as minimization of costs, or design for the highest possible
quality. This design algorithm guarantees that the space of alternatives is explored in a system-
atic manner. To address the influence of imperfect information on the exploration algorithm,
we extend quality requirements and quality estimations with fuzzy and probabilistic tech-

Chapter 4: Specification and Evaluation of Imperfect Quality Requirements and Estimations

61

niques. These techniques enable the method to evaluate design alternatives while considering
the imperfect nature of both requirements and estimations. The novelty of the approach lies in
the possibility to model and analyze information in quality requirements an expectations that
does not contain the level of detail that is desirable. The manner of specification is extended
with models that can describe this imperfection accurately. The design tree model ensures that
the decision making process based on this information considers the imperfection and its con-
sequential risks accordingly.

4.2.2 The Design Tree Model

In the previous section we have identified that during software development several design
issues are identified and resolved, often in a sequential manner. From this perspective, the
design of software can be seen as a process of steps, in which customer requirements are
refined into a software system that incorporates these requirements. In each step of the process
one of the remaining design issues is resolved by identifying and selecting the most suitable
solution for this issue. Based on this view of the software development process, iteration is
achieved by rolling back to one of the previous steps and reconsidering the solutions that were
selected from this step forward. In our approach we describe a design step as a transition
between two design states. We define a design state to consist of the following elements:

• Unresolved Issues Set

• Principle Design Issue

• Resolved Issues Set

• Quality Expectation

The Unresolved Issues Set contains the remaining work for the software engineer by means of
a set of unresolved design issues. The principle design issue is the design issue that will be
resolved first before other design issues can be addressed. The principle design issue is
selected from the unresolved issues set by the software engineer at every design state. The
Resolved Issues Set contains the issues that have been resolved, and the solution that has been
selected for each resolved issue. The Quality Expectation is a numeric expression that
describes the maximum quality that the software engineers expects to be achievable from this
design state. We elaborate on quality based evaluation of design states in section 4.2.3. Based
on this definition for design states, a design step schematically can be described as follows:

In Figure 4.1, a design step from design state I to design state II is described. In state I, two
design issues i1 and i2 have been resolved with solutions s1 and s2 respectively. The software
engineer has identified i3 as the principle design issue for state I. Furthermore, the expected
quality that can be achieved from this state is indicated with p. During the step from state I to
step II the principle design issue is resolved with the solution s3. Therefore, in state II the set

{ i3, i4, …, in }

{ i1: s1, i2: s2 }

p

{ i4, i5, …, in, …, im }

{ i1: s1, i2: s2, i3: s3 }

q

I II

Figure 4.1 Design Step

Imperfect Information in Software Design Processes

62

with resolved issues contains i3 with a solution s3. The quality expectation is updated to a value
q, since the inclusion of s3 can lead to new insights on the quality of the resulting system. The
new issues that result from the selection of s3 are added to the unresolved issues list.

Obviously, it is, in general, possible to resolve a design issue in more than one way. For most
design issues solutions exist that are functionally equivalent, but exhibit different quality
behavior. The choice between such design alternatives is described by adding multiple result-
ing design states to the current design state. An example design decision with design alterna-
tives is depicted in Figure 4.2.

In this picture issue i3 can be resolved with three solutions, s3, s3’ and s3’’. This means that the
design states II, III and IV describe alternative design states from which the design process can
be continued. In each of these states i3 has been resolved and i4 is the new principle design
issue. The value for the expected quality can differ per state, since each state leads to a differ-
ent system design. The selection of a design alternative can be based on these values, for
instance by choosing the value that indicates the highest expected value. When the entire
sequence of design decisions, that are taken in the course of a software development process,
are captured using design states as described above, a design tree is created. A design tree is a
tree structure that contains all the design decisions that have been made and the alternatives
that have been considered. In the design tree each node represents a design state in the software
development process. A sample design tree is depicted in Figure 4.3.

{ i3, i4, …, in }

{ i1: s1, i2: s2 }

p

{ i4, i5, …, in, …, ip}

{ i1: s1, i2: s2, i3: s3 }

s

I

II

{ i4, i5, …, in, …, iq}

{ i1: s1, i2: s2, i3: s3’ }

t

III

{ i4, i5, …, in, …, ir}

{ i1: s1, i2: s2, i3: s3’’ }

u

IV

Figure 4.2 Design Step with Alternative Solutions

Chapter 4: Specification and Evaluation of Imperfect Quality Requirements and Estimations

63

This design tree represents a sequence of four design decisions. In the first design state S four
design issues are identified. For the principle design issue of this state, three different design
alternatives have been identified. Each of these alternatives has received an evaluation with
respect to the expected quality of the resulting system, indicated by the numbers attached to the
node (a higher number means higher expected quality). The design process is continued by
choosing the alternative with the highest quality expectation. This is repeated until all design
issues have been resolved. Note that in each state the alternative was chosen that offers the
highest expected quality. From the picture, it can be seen that a design tree describes the deci-
sions, the order in which they have been resolved and the contemplated and selected alterna-
tives. In the case that a design for a software system needs to be adjusted, the design states in
the design tree can be revisited as potential points to roll back to. In the picture it can be seen
that the deepest node with quality 7 has two child nodes, one with quality 3 and one with 2.
This describes the situation where the estimation was considerably larger than the quality of
the new design states. At this point, it is better to continue with the node with quality 6 and
expand from there. In section 4.2.4, we elaborate on the strategies for selecting design states
with respect to particular design interests.

4.2.3 Quality-based Evaluation of Design Alternatives

In Figure 4.3 each design state has a number that represents the expected quality of the result-
ing system. This number is a compound description on how well the final system is expected to
perform with respect to the quality requirements. To enable a comparison mechanism for the
selection of design alternatives, the quality evaluation of design alternatives must be per-
formed in a uniform manner. To facilitate the uniform evaluation of design alternatives, we
define a standard evaluation method in this section. Since design alternatives generally are

S

7 4 2

7 4 6 2 2

6 4 3 2

4 3

3 2

Figure 4.3 Design Tree

Imperfect Information in Software Design Processes

64

functionally equivalent, the selection of one alternative over the other can only be based on dif-
ferences in their quality attributes. Quality attributes are non-functional aspects of software
systems, such as performance or reliability. This definition assumes that the quality attributes
of interest are expressible in numbers. We define quality requirements in a fashion very similar
to a traditional non-functional requirement, however for the uniform evaluation of the
expected system quality a numeric description is required. Therefore, we define quality
requirement to be a numeric boundary on a quality attribute. Quality estimations can now also
be defined in terms of quality attributes. A quality estimation is defined to a numeric descrip-
tion of the expected value of a quality attribute. The quality estimations that are made for a
design alternative should describe the expected quality of the overall system if this system
would include this design alternative. Additionally, for each quality attribute x we define Qual-
ityx to be the boolean evaluation of the estimation Estimationx with respect to its quality
requirement Requirementx.

Qx =

Obviously, this definition is used for quality requirements that define an upperbound restric-
tion. For lowerbound requirements the comparison operator is reversed. For the evaluation of j
design alternatives for a particular design issue with respect to n quality requirements, we
introduce the following evaluation table:

Table 4.1 describes a standard table for the evaluation of the design alternatives for a particular
design issue. Each row describes the evaluation of a single design alternative, or design state,
based on its respective quality estimations. In the first columns of the table Estimationx con-
tains the estimated value for the quality attribute that is constrained by Requirementx. For
example, if Requirement1 defines a restriction on the response time of the system, the column
indicated by Estimation1 contains the estimated response times for the design alternatives. The
second set of columns contains the boolean evaluation of comparing the estimations to the
requirements, indicated by Quality1, Quality2, ..., Qualityn. In the example above, Quality1
would contain a “true” for option 1, if the response time of this alternative is estimated to be
faster than the required value described in Requirement1.

The final column in Table 4.1, labelled Overall Quality contains the numbers that describe the
overall evaluation of the respective design alternatives. These numbers are statements based on
the evaluation results of individual quality attributes (Quality1, Quality2, ..., Qualityn). There
are many different ways in which the attribute evaluations can be combined, depending on the
particular interest of the stakeholder. Straightforward examples for the overall quality compu-
tation include the multiplication of the attribute values, which corresponds to the logical AND-
operator, or the sum of the attribute values. It is also possible to define more complex functions
that reflect stakeholder preference for quality attributes by means of weighted averages or pen-
alty functions. In current software engineering practices, it is quite usual to make estimations

Requirementx Estimationx≥

Table 4.1 Design Alternatives Evaluation Table

E
st
im

at
io

n
1

E
st
im

at
io

n
2

..
.

E
st
im

at
io

n
n

Q
u
al

it
y
1

Q
u
al

it
y
2

..
. Q
u
al

it
y
n

O
v
er

al
l
Q

u
al

it
y

Design Decision
Option 1
Option 2

...
Option j

Chapter 4: Specification and Evaluation of Imperfect Quality Requirements and Estimations

65

and evaluations as it is carried out in this section [Clements2004] [Kazman1998], although this
is not always defined explicitly. The evaluation approach presented in this section is extended
in section 4.3 by defining imperfection support for quality requirements, quality estimations
and the comparison operators.

4.2.4 Configurable Design Strategies for Design Trees

With the design tree model, software design can be defined as a search problem within a search
space, which is comprised of all design states that can be considered if all possible design alter-
natives are known. This search space is the tree structure that is comprised of all possible alter-
native system designs for the identified design issues, and is called the principle design tree.
The activity of resolving design issues as described in the previous section then becomes a par-
tial exploration of the principle design tree as depicted in Figure 4.4.

In this picture, the design tree of Figure 4.3 is depicted as partial exploration of the principle
design tree. The design states of the principle design tree that have not been identified as alter-
native solutions, have been greyed out. If all the design states of the principle design tree could
be identified, it would be possible to find the best possible system design. Typically, the princi-
ple design tree is too big to explore completely, therefore the development process must aim at
expanding the design tree only until a design is found of acceptable quality.

The decision support capabilities of the design tree model lie in a search algorithm that deter-
mines in a systematic manner from which design state the software engineer should continue.
This ordering of the potential design states is achieved by sorting all the leaf nodes of the cur-
rent design tree. The selection of the design state from which to continue is therefore deter-
mined by the way the nodes are ordered, or the so called design strategy. Note that it is
possible to sort nodes based on multiple criteria, such as the quality expectation or the depth in
the tree. These ordering criteria represent different design strategies, such as quality or cost
optimization. The preference of one strategy over the others is based on managerial motives
such as minimization of costs, or time to market. We define the following design algorithm,
which enables the construction of a design tree based on configurable design strategies

S

7 4 2

7 4 6 2 2

6 4 3 2

4 3

3 2

Figure 4.4 A Partial Exploration of the Principle Design Tree

Imperfect Information in Software Design Processes

66

In the first step of this algorithm, the root node of the design tree (which is the only node) is
stored in a list L. Additionally, the current design state N is set to be the root node of the design
tree. The while-loop of the search algorithm is entered when the unresolved issues set of N is
not empty. Since N is the design state for which a design issue is resolved, it is removed from
L in the first step of the loop. In the next statement all children of N are added to L, which cor-
responds to the identification of design alternatives for the principle design issue in N. After
this, all the design states in L are ranked according to the design strategy by sorting the list.
Finally, the first element of L is selected as the new current design state N. In case N is a
design state without remaining design issues the design process is completed, otherwise the
while-loop is repeated. Note that L contains all leaf nodes of the design tree, which means that
design states that were not selected will be reconsidered in subsequent design steps.

In this algorithm the function Sort rearranges the list L such that it becomes an ordered list.
This means that design strategies are implemented in the Sort-function and only differ in the
comparison criterion for two nodes. By choosing a different sorting function we can configure
the design strategy we want to use. Below we describe three different design strategies for
decision support in the design process. Note that these design strategies are variants of the
branch-and-bound searching algorithm, and are in particular variants of the well-known A*-
search algorithm, which is for instance described in [Russel1995]. As a result, it is vital for the
quality estimations to be optimistic estimations. This means that each design state should
always expect a better quality value than the final system will have. When this restriction is not
adhered to, the A*-search algorithm, and with that the optimization approach, can not guaran-
tee the optimality of the final result.

Quality-based Design Strategy

The first strategy, aimed at finding the optimal design, uses a comparison based on only the
quality evaluations of the individual design states. The nodes are ordered based on their indi-
vidual quality estimations, with the node with the highest estimation ordered in front. This
strategy guarantees to find the best possible design of all designs that can be found in the
design tree. However, due to the need to explore the entire principle design tree, this strategy
will take a very long time to result in the final system and as a result the costs of this strategy
can become too high. When we examine the final decision in Figure 4.3, we are at the deepest
node with quality evaluation 6, and two alternatives for the current principle design issue. The
first alternative is evaluated with quality 3 and the second with quality 2. The application of
this strategy means we continue with the node with the highest quality evaluation, which is the
node with expected quality 5.

Design

{

List L = { Root Node };

Node N = First element of L;

While (N is not a completed design)

{

Remove N from L;

Add Children of N to L;

Sort(L);

N = First element of L;

}

Return N;

}

Chapter 4: Specification and Evaluation of Imperfect Quality Requirements and Estimations

67

Time-based Design Strategy

The second strategy therefore is directed at minimizing the time needed to find a design, any
design. The depth of a node in the design tree indicates how many design issues have been
resolved, which means that a node that is deeper in the tree is closer to a completed design.
Therefore the fast strategy always chooses the lowest leaf node in the tree, and in case two or
more nodes are at the same depth, the node with the highest quality estimation is taken. To
implement this strategy, in addition to the quality estimation for each node, also the depth of
the node in the tree is needed. Therefore the value of a node in the design tree is represented by
a 2-tuple of type:

(Depth, Quality Value)

The first element of the tuple is the depth in the tree and the second element is the quality eval-
uation of the node. The comparison of two nodes can now be performed by the standard com-
parison operator for tuples:

(n1, m1) >

Note that this strategy aims to find a design as soon as possible and disregards any quality con-
straints, which means there is no guarantee that the system will satisfy the quality require-
ments. When we use this strategy to determine the best node in the final decision in Figure 4.3,
we choose the node the is deepest in the tree, which means one of the children of the current
node. Since both nodes have an equal depth in the tree, we choose the node with the highest
quality expectation, which is the node with expected quality 3.

Balanced Design Strategy

In order to offer a balanced advice on the selection of design alternatives, the third design strat-
egy offers a trade-off between the expected quality of the system and the amount of work that
is needed to come to a completed design. To achieve this, the balanced strategy selects the
deepest node for which the quality requirements are fulfilled by the quality estimations. We
extend the 2-tuple of the previous strategy with a Boolean that indicates whether the node sat-
isfies the defined quality constraints. The value of a node now becomes a 3-tuple of type:

(Boolean, Depth, Quality Value)

The first element is a boolean that reflects the truth of the statement “The quality estimations
of the system satisfy the quality constraints”. The second element is the depth of the node from
the root of the tree. The third element is the actual quality estimation of the node. Again, using
the standard comparison operator for booleans, the nodes can be sorted based on these values.
The final design that is found by this strategy satisfies the quality constraint (if such a design
exists), but it needs not to be the design with the highest possible quality. This strategy will
find an acceptable system rather than the best system, but the amount of reiterations will be
reduced compared to the quality-based design strategy. In addition the strategy assures that if a
system exists that adheres to the defined constraints that it will be found. The selection of the
best design state for the last design decision in Figure 4.3 now depends on the quality require-

n2 m2,() n1 n2>() n1 n2=() m1 m2>()∧()∨⇔

Imperfect Information in Software Design Processes

68

ment for the system. If the quality should be at least 4, the deepest node in the tree with quality
4 would be selected. If the quality should be at least 5, this strategy would behave the same as
the first strategy and select the node with quality 5.

Note that continuing the design from a previous node corresponds to taking an incremental
design step, where the system is adjusted. Therefore, the adjustable design strategies in the
design tree approach facilitate the systematic iterative design of the software system.

4.2.5 Example Case: Remote Water Sensor

We demonstrate the design tree approach by means of an example. Consider a storm surge bar-
rier designed to protect a moderately populated urban area. The choice of this example is
inspired from [Tretmans2001]. The barrier has to be closed only in case of absolute necessity;
otherwise the cargo transport can be hampered unnecessarily. However, leaving the barrier
open during storm situations can result in immediate danger for the population. Since the deci-
sion to close the barrier is a complicated task, it has been decided to incorporate a computer-
controlled system for this purpose. The control system should make a decision every 10 min-
utes, based on numerous inputs such as weather forecasts, changes in the water level, tides, etc.

In order to work out this example case, we need to decide on a software design process. First,
we will present the non-functional requirements. Second, we will describe the design process.
Finally, we will further restrict our scope by making some initial design decisions. We would
like to point out that the techniques proposed in this example are general and the suggested
process is introduced for illustration purposes only. The functional requirements are summa-
rized as follows: The Remote Water-level Sensor (RWS) system measures the water level of
the river and reports it periodically to the host computer, which is placed at some other geo-
graphic location. The host computer, in turn, sends control requests to the RWS. The system
architects are requested to analyze the RWS with respect to performance, reliability and cost.
The following non-functional requirements are provided by the stakeholders:

PR1: Client must on average receive a water-level reading within 500 milliseconds after
sending a control request.

PR2: Client must at the latest receive a water-level reading within 650 milliseconds after
sending a control request.

PR3: When a failure occurs in the measuring part, the host system must be able to continue
operating for 10 seconds.

PR4: The cost of this system must not exceed 225K euros.

The stakeholders have required that all these requirements must be fulfilled, otherwise the sys-
tem is not acceptable. The software engineers have established the following two design issues
for the main design of the software system:

a) The number of sensors and the scheduling of the server has to be determined.

b) The architecture style has to be selected. This step can be further specialized as the
selection of the sensor, server and connection topology.

We assume that the system architects initially take the following design decisions. The RWS is
embedded into a system architecture based on the client-server idiom. The RWS functionality
is encapsulated in a server that serves some number of clients. The RWS server hardware

Chapter 4: Specification and Evaluation of Imperfect Quality Requirements and Estimations

69

includes an analog-to-digital converter (ADC) that can read and convert a water-level for one
sensor at a time. Requests for water-level readings are queued and fed, one at a time, to the
ADC. The ADC measures the water-level of each sensor at the frequency specified by its most
recently received control request.

4.2.6 Design Decisions for the Remote Water Sensor

Alternatives of the sensor server architecture

According to the process in the previous section, first the internal architecture of the server
must be selected. Assume that the architecture contains three kinds of components: water-level
tasks (independently scheduled units of execution), that are scheduled to run with some period;
a shared communication facility task (Comm), that accepts messages from the water level
tasks and sends them to a specified client; and the ADC task, which accepts requests from the
water level tasks, interfaces with the physical sensors to determine their water heights, and
passes the result back to the requesting water level task. The alternatives for the server archi-
tecture lie in the implementation of the ADC and the amount of sensors.

Figure 4.5, shows three alternatives for the server architecture. The alternative a is based on a
single sensor. In this alternative, only one measurement can be performed at a given point in
time. During measurement, all requests that arrive will have to wait according to a first come
first served principle. We assume that in this option no priority mechanism or scheduling is
implemented. In alternative b the server is connected to multiple sensors and the waterlevel
tasks are stacked on to the sensors until all sensors are occupied. Once this is completed, each
task will be added to the set of sensors on a first come first served principle. Again here, we
assume that no priority mechanism or scheduling is implemented. In architectural option c, we
assume that the server is connected to multiple sensors. In addition, this architecture also con-
tains an intelligent scheduling mechanism based on priority levels of individual tasks, such that
the most important measurement tasks can be performed as soon as possible. We will now
examine these three design alternatives in more detail. The results of the quality estimations
and evaluations are given in Table 4.2. Note that the estimations are made for the expected
overall system quality and in an optimistic fashion, to ensure the optimal results of the design
strategies.

ADC

WaterlevelTask 1

WaterlevelTask 2

WaterlevelTask n - 1

WaterlevelTask n

Comm

to clients

Sensor

(a)

ADC

WaterlevelTask 1

WaterlevelTask 2

WaterlevelTask n - 1

WaterlevelTask n

Comm

to clients

SensorSensor

(a)

ADC

Sensor

Sensor

Sensor

(b)

WaterlevelTask 1

WaterlevelTask 2

WaterlevelTask n - 1

WaterlevelTask n

Comm

to clients

ADC

SensorSensor

SensorSensor

SensorSensor

(b)

WaterlevelTask 1

WaterlevelTask 2

WaterlevelTask n - 1

WaterlevelTask n

Comm

to clients

ADC

Sensor

Sensor

Sensor

Sched.

(c)

WaterlevelTask 1

WaterlevelTask 2

WaterlevelTask n - 1

WaterlevelTask n

Comm

to clients

ADC

SensorSensor

SensorSensor

SensorSensor

Sched.

(c)

WaterlevelTask 1

WaterlevelTask 2

WaterlevelTask n - 1

WaterlevelTask n

Comm

to clients

Figure 4.5 Server Architecture Alternatives: (a) Single Sensor,
(b) Multiple Sensors, (c) Multiple Sensors with Scheduler

Imperfect Information in Software Design Processes

70

In this table the design alternatives for the first design decision are evaluated according the
approach defined in Section 4.2.3. For each of the design alternatives an estimation is made for
the average performance, the maximum performance, the reliability and the cost. The values
for Quality1, Quality2, Quality3 and Quality4 indicate whether or not the estimations satisfy
their respective requirement given in Section 4.2.5. For example, Quality1 for option 1.1 has
the value “1”, since the estimated average performance is 400 milliseconds, which satisfies the
requirement of a response time within 500 milliseconds. Finally the column Overall Quality
indicates the amount to which the option in its entirety satisfies the quality requirements. Since
the stakeholders have demanded that all requirements are fulfilled, the overall value is com-
puted by multiplying Quality1, Quality2, Quality3 and Quality4. With the multiplication, any
requirement that is not fulfilled will cause the overall result to be 0 as well.

In the table, option 1 has the worst performance estimation, since this architecture only has one
sensor, which is used for all measurements. Option 2 has a better performance figure, since the
workload can be divided amongst multiple sensors. Option 3 can even optimize this with a
dedicated scheduler. However, each of these options becomes increasingly more expensive
due to these extra facilities. The reliability for each option is estimated to be optimal, since the
communication architecture is not influenced by the choices that are made for the server archi-
tecture. As a result, for this quality attribute the estimation becomes an irrelevant value. From
the table it can be seen that systems that include option 1.1 as well as option 1.2 are expected to
fulfil the quality requirements. The intelligent scheduler is not a feasible choice, due to the cost
of this alternative. Based on these quality evaluations, no distinctions can be made between the
single server and multiple server architecture. At this point we choose option 1.2, but if this
option turns out to be unacceptable at a later stage, it is still possible to backtrack to the single
server architecture.

Alternatives of the Communication Architecture

The second design issue is to decide on the communication architecture of the sensor server
and the client systems. This decision in particular focuses on the connection topology, which
means that the quality evaluations will now explicitly consider the reliability of the system.

Table 4.2 Design Decision 1

A
v
er

ag
e

P
er

fo
rm

an
ce

M
ax

im
u
m

P
er

fo
rm

an
ce

R
el

ia
b
il
it
y

C
o
st

Q
u
al

it
y
1

Q
u
al

it
y
2

Q
u
al

it
y
3

Q
u
al

it
y
4

O
v
er

al
l
Q

u
al

it
y

Design Decision 1
Opt. 1.1 400 400 180 1 1 1 1 1
Opt. 1.2 350 350 190 1 1 1 1 1
Opt. 1.3 300 300 230 1 1 1 0 0

∞
∞
∞

Chapter 4: Specification and Evaluation of Imperfect Quality Requirements and Estimations

71

The first option for the communication architecture is indicated with a in Figure 4.6. This is a
simple and inexpensive client-server architecture, with a single server (RWS Server) and mul-
tiple clients. Option b differs from the first option in that it adds a second server to the system
architecture. These servers interact with clients as a “primary” server (indicated by the solid
lines between servers and clients) or as a “backup” server (indicated by the dashed lines).
Every client will automatically switch to their specified backup if they detect that the main
server is down (because it has failed to send requests for a prescribed period of time). Option c
extends option 1 by a “wrapper” that intercedes between the client and the server. This wrap-
per is an “intelligent cache”, shown as IC in the figure. The cache intercepts periodic water
level updates from the server to the client, builds a history of these updates, and then passes
each update to the client. When the server is interrupted, the cache synthesizes updates for the
client. The cache is considered to be intelligent because the updates it provides take advantage
of historical water level trends to extrapolate plausible values into the future. This intelligence
may be nothing more than linear extrapolation, it can be a sophisticated model that analyzes
changes in temperature trends, or takes advantage of domain-specific knowledge on how water
levels rise and fall. Obviously, the synthesized updates of the cache will become less meaning-
ful over time. In Table 4.3 the evaluations of the design alternatives of the second design deci-
sion can be found, after choosing the second option at the first decision.

The average response time of the first two options in Table 4.3 is identical, since they both use
the same server (but the second option has a redundant server that increases the reliability).
The third option is obviously slower, since the intelligent caching needs to be updated. The
maximum response time is indefinitely long for the first option since in case the server fails,
there will be no reply. For the second option, the system will wait for a time-out of the first
server before the second server sends the measurement. The third option has a maximum
response time identical to the average, since the cache can provide “measurements” any time
the server fails. The reliability for the first option is 0, since in case of a server failing, the sys-

RWS Server

HostComputer 1

HostComputer 2

HostComputer n-1

HostComputer n

(a)

RWS Server

HostComputer 1

HostComputer 2

HostComputer n-1

HostComputer n

(a)

RWS Server

HostComputer 1

HostComputer 2

HostComputer n-1

HostComputer n

RWS Server

(b)

RWS Server

HostComputer 1

HostComputer 2

HostComputer n-1

HostComputer n

RWS Server

(b)

RWS Server

HostComputer 1

HostComputer 2

HostComputer n-1

HostComputer nIC

IC

IC

IC

(c)

RWS Server

HostComputer 1

HostComputer 2

HostComputer n-1

HostComputer nIC

IC

IC

IC

(c)

Figure 4.6 Communication Architectures: (a) Single Server,
(b) Redundant Server, (c) Intelligent Caching

Table 4.3 Design Decision 2

A
v
er

ag
e

P
er

fo
rm

an
ce

M
ax

im
u
m

P
er

fo
rm

an
ce

R
el

ia
b
il
it
y

C
o
st

Q
u
al

it
y
1

Q
u
al

it
y
2

Q
u
al

it
y
3

Q
u
al

it
y
4

O
v
er

al
l
Q

u
al

it
y

Design Decision 2
Opt. 2.1 400 0 190 1 0 0 1 0
Opt. 2.2 400 650 200 1 1 1 1 1
Opt. 2.3 450 450 13 205 1 1 1 1 1

∞
∞

Imperfect Information in Software Design Processes

72

tem is not able to continue running. For the second option the reliability is infinite, since in
case a server fails, the system can continue operating normally using the backup server. For the
third option, the reliability depends on the time the intelligent cache is able to provide sensible
extrapolated values. Finally the cost for the multiple servers and intelligent caching is esti-
mated to be higher than the cost for the single server solution. In this table it can be seen that
the redundant server topology and the intelligent cache topology satisfy the quality require-
ments. Here we choose to continue with the intelligent cache alternative. As a result of this
choice, the software engineers have to decide on which extrapolation algorithm for the intelli-
gent cache to use. Therefore, the choice for this algorithm is added as a new design issue.

Alternatives of the Intelligent Cache

The final design decision to be made is with respect to the type of intelligent cache that will be
used. This means that this issue will only arise when the intelligent cache option is selected in
the second design decision. In this example three different cache implementations are consid-
ered: Linear Extrapolation, Trend Extrapolation and Domain Analysis Extrapolation. In linear
extrapolation, we assume that only the values that have occurred recently from the sensors are
considered. In this case, the cache does not need to keep track of a large number of measure-
ment values. However, a linear extrapolation cannot be used over extended periods of time,
since it does not keep track of the periodical behavior of rivers, for instance caused by rainfall
or temperature changes. The trend extrapolation cache analyses the trends that have occurred
in the available measurements, and tries to extrapolate multiple values according to this trend.
For this type of extrapolation a larger set of values needs to be cached in order to make a reli-
able trend analysis (the actual amount of data depends on the kind of trend analysis). In addi-
tion to the amount of data required, the computational complexity also increases, since the
trend analysis must be performed as well as the extrapolation. The domain analysis cache
includes specific knowledge on how water levels change over time. This can for instance be
knowledge on seasonal swings in water levels caused by precipitation or temperature levels.
Together with a trend analysis based on recent data from the sensors, this domain knowledge
can be used to perform an informed extrapolation. This should result in the possibility to pro-
vide credible extrapolations for a longer period of time. The three alternatives have been eval-
uated and the results of the quality estimations and evaluation, are given in Table 4.4.

The performance for the first option is estimated at 510, which is slightly higher than the sec-
ond option. This is due to the fact that a linear extrapolation always needs to consider the new-
est value that has been measured to determine the linearity. The trend extrapolation does not
need to do this. The algorithm of the second option always needs to consider a complex math-
ematical model of the environment variables, which makes the performance much slower. The
reliability for the linear extrapolation is somewhat lower than the trend extrapolation, since it
has a simpler means of extrapolation of sensor readings. The third option is obviously superior
in this field. Finally the cost of each option increases as the complexity of the extrapolation

Table 4.4 Design Decision 3

A
v
er

ag
e

P
er

fo
rm

an
ce

M
ax

im
u
m

P
er

fo
rm

an
ce

R
el

ia
b
il
it
y

C
o
st

Q
u
al

it
y
1

Q
u
al

it
y
2

Q
u
al

it
y
3

Q
u
al

it
y
4

O
v
er

al
l
Q

u
al

it
y

Design Decision 3
Opt. 3.1 510 510 9.5 205 0 1 1 1 0
Opt. 3.2 500 500 10 225 1 1 1 1 1
Opt. 3.3 850 850 12 300 0 0 1 0 0

Chapter 4: Specification and Evaluation of Imperfect Quality Requirements and Estimations

73

algorithm increases. In the Overall Quality column it can be seen that only one system fulfills
the quality requirements.

4.2.7 Design Tree of the Design Decisions for the Remote Water Sensor

For the design of the Remote Water Sensor we now have addressed three design issues, for
each of which three possible alternatives have been considered. The alternatives have been
evaluated with respect to their expected quality, and based on this evaluation for each design
issue a solution was selected. In Figure 4.7 a design tree is depicted, that represents the three
design decisions that have been taken for the Storm Surge Barrier, as well as their overall qual-
ity evaluation.

In this design tree, the overall quality evaluations of the individual design alternatives are
included, as well as the choices that have been made. Note that the design strategies in this
case can not sort a number of nodes distinctively, since the function we use to determine the
overall quality can not sufficiently distinguish between alternatives that satisfy all quality
requirements.

4.3 A Model for Imperfect Requirements and Estimations

4.3.1 Crisp Specifications of Quality Requirements and Estimations

In the RWS example, the quality requirements provide very precise boundaries for the accept-
ability of the quality attributes. For instance, the cost requirement expresses that the maximum
cost must not exceed 225.000 euros. While the precision of this specification is very useful
with respect to evaluation of design alternatives, as described in section 4.2.3, it generally is
very difficult for stakeholders and software engineers to achieve. A stringent restriction does
not allow system designs that exceed this limit, even when it is only marginally larger. For
example, a system with a cost of 225.005 euros would be rejected based on this requirement
specification. Typically, this is not the way in which the requirement specification was
intended. The numeric restrictions in quality requirements generally are indications of desired
behavior, and should not be treated as non-negotiable boundaries during the development pro-

Server 1 Server 2 Server 3

Comm. 1 Comm. 2 Comm. 3

Algorithm 1 Algorithm 2 Algorithm 3

1 1 0

0 1 1

0 1 0

Figure 4.7 Design Tree of Remote Water Sensor

Imperfect Information in Software Design Processes

74

cess. Rather, these restrictions should be seen as indicative boundaries, that can be exceeded
within a certain tolerance range. However, while software design processes acknowledge the
difficulty of defining accurate requirement specifications, they do not provide means to cap-
ture this imperfection and include it in the evaluation of design alternatives. Instead of model-
ing the imperfect information appropriately, a crisp specification is defined, even when the
particular choice can not completely be justified.

In a similar manner quality estimations suffer from the use of crisp numeric expressions to
indicate the expected quality. Quality estimations are needed during the development process
in the case that it is not possible to measure or to determine the quality behavior of the com-
pleted system. In particular during the early stages of software design, software engineers need
to make design decisions based on quality expectations, since at this time point only an
abstract view of the system design is available. But while estimations are an imperfect descrip-
tion of the quality the system will have upon completion, they are described using crisp
numeric expressions that do not capture the imperfect character of the estimations. For exam-
ple, consider a cost estimation of approximately 225.000 euros. If this estimation is modeled
by using only the numeric expression 225.000, the expected quality would fulfil the cost
requirement of the Remote Water Sensor example. However, the term “approximately“ indi-
cates that the actual cost can still differ from this estimation, which makes it possible that the
costs of the completed system will exceed the restriction.

While the evaluation of the RWS example has led to two alternatives that satisfy the quality
requirements, the manner in which decision is reached can invalidate the results. By defining
and treating the estimations in the same manner as an actual measurement on the finished sys-
tem, the inherent imperfection of estimations can invalidate many design decisions at later
stages. Similarly, the boundaries set by the quality requirements can be deceiving. In order to
address these problems, quality requirements and estimations need to be extended with models
that can express imperfection such as tolerance. In addition, the evaluation mechanism for
design alternatives needs to be extended, such that the evaluations can be performed with sup-
port for the imperfection models.

4.3.2 Imperfection Models for Quality Requirements

In this section, we present the first part of our approach, which consists of models that can cap-
ture the imperfect nature of quality requirements and estimations. As has been identified ear-
lier, in both the quality requirements as well as the quality estimations it can be very difficult to
determine the precise values required for a straightforward evaluation. In our approach we pro-
pose that the numeric values that are used in requirements and estimations are described with
probability distributions and fuzzy sets, in addition to normal, “crisp” numbers. By using these
models, it is possible to describe additional knowledge that exists about requirements and esti-
mations, such as tolerance and variance. For the definition of these extensions, we first refine
our definition of quality requirements to the following: a quality requirement is an interval of
acceptable quality attribute values. In this definition, a quality requirement enforces its restric-
tion on the acceptable behavior by means of an interval specification. For example, a maxi-
mum response time requirement of rq milliseconds corresponds to the acceptable interval [0,
rq]. Any design alternative with a response time within this interval is acceptable, and a value
outside the interval is not acceptable. Schematically, we can depict a quality requirement as
follows:

Chapter 4: Specification and Evaluation of Imperfect Quality Requirements and Estimations

75

In Figure 4.8, the crisp requirement interval is described by a step function. Each possible
value of the quality attribute is mapped to 0 (meaning not acceptable) or 1 (meaning accept-
able). The sharp boundary of the requirement is represented by the discontinuous change from
1 to 0 at the value rq. This function is called the membership function of the interval.

Fuzzy Requirements

The first type of imperfection we address is tolerance in the specification of quality require-
ments. According to the definitions in chapter 2, this falls into the category of impreciseness,
which means that a number of values beyond a specific boundary are still acceptable but less
desirable. We model impreciseness in quality requirements by means of a fuzzy interval. In a
fuzzy interval the membership function contains no discontinuous transition from 1 to 0, but
rather has a gradual decline. A typical fuzzy requirement therefore looks as follows:

In Figure 4.9, the fuzzy interval is described by a piecewise linear membership function. The
transition from completely acceptable (1) to completely unacceptable is a linear decline
between rq and rq+δ. The tolerance of the stakeholder with respect to the acceptable values is
modeled by the linear decline. We refer to the shape of such membership functions as semi-
trapezoidal and as a convenient shorthand notation for them we use (x, x+δ).

Probabilistic Requirements

The second type of imperfection that can occur in quality requirements relates to the definition
of uncertainty in chapter 2. In this definition the actual value of an imperfect specification is
not known at the current time point, but there will be a perfect specification in due time. Con-
trary to impreciseness, such as tolerance, uncertain specifications introduce the risk for each
choice to be completely outside the boundaries, instead of being less desirable. Numeric
expressions in an uncertain requirement specification are defined by a probability density func-
tion. Given a probability function f, the probability that the actual requirement value lies in the
interval [a, b] is equal to:

0

1

rq

Figure 4.8 A Crisp Requirement

0

1

rq rq+δ

Figure 4.9 A Fuzzy Requirement

Imperfect Information in Software Design Processes

76

4.3.3 Imperfection Models for Quality Estimations

Imperfection in quality estimations belongs to the category of uncertain information, as
defined in chapter 2. After completion of a software system, the quality attributes can be mea-
sured on a physical system, which means that estimations describe imperfection that will be
resolved to a single value in due time. Depending on the nature of the imperfection, different
types of imperfection models can be used for uncertain estimations. We define three types of
models for uncertain estimations: fuzzy estimations, probabilistic estimations and fuzzy proba-
bilistic estimations.

Fuzzy Estimations

The first imperfection model for quality estimations consists of fuzzy estimations. This imper-
fection model should be used in case the actual quality attribute value will fall within a partic-
ular interval. We model fuzzy estimations as extensions of crisp estimations by means of
triangular fuzzy numbers. The membership function of a typical fuzzy estimation looks as fol-
lows:

The fuzzy estimation in Figure 4.10 is described with a piecewise linear function. This estima-
tion considers all values between qu-δ1 and qu+δ2 to be relevant to a certain degree, with the
most prominent value being x. As a convenient shorthand notation for triangular fuzzy num-
bers we use (qu-δ1, qu, qu+δ2). Note that it is not necessary for the fuzzy estimation to be sym-
metrical, δ1 and δ2 can be different values. Additionally note, that a crisp estimation is the
special case of fuzzy estimations with δ1 = δ2 = 0.

Probabilistic Estimations

The second imperfection model for quality estimations is probabilistic estimations. Probabilis-
tic estimations should be used in case the actual behavior of a quality attribute depends on
probabilistic events. For instance, in the RWS example the response time of the server depends
on the amount of tasks that are waiting in the queue. The expected quality attribute values are
described in a probabilistic estimation using a probability density function f. The average of
estimation should correspond to the expectation value E of the distribution, given by:

E =

f x() xd

a

b

∫

0

1

qu qu+δ2qu-δ1

Figure 4.10 A Fuzzy Estimation

xf x() xd

U

∫

Chapter 4: Specification and Evaluation of Imperfect Quality Requirements and Estimations

77

Fuzzy Probabilistic Estimations

Finally, the third imperfection model for quality estimations is fuzzy probabilistic estimations.
Probability distribution functions can be categorized in a number of families, such as normal
distributions and exponential distributions. This categorization is based on the parameters that
are needed to describe the desired behavior of these functions. For example, the exponential
distribution is described by means of the parameter λ, as can be seen in section 2.4.2, and the
normal distribution is described by means of its mean value and variance. In the case that esti-
mations are made, where it is possible to determine the distribution family to be used but still
very difficult to determine the precise parameters, a fuzzy probabilistic estimation can be used.
Fuzzy probability distributions allow the parameters of density functions to be a fuzzy number,
and therefore consider multiple parameter values to a degree. In this case, a fuzzy probabilistic
estimation is made with a fuzzy probability density function f with fuzzy parameters P1, ..., Pn.
The average value of the quality estimation should correspond to the defuzzification of the
fuzzy expectation value E, given by:

E[α] = { , ..., }

In this definition, E is defined in terms of α-cuts, which have been explained in section 2.4.3.

4.4 Comparison Operators for Requirements and Estimations

4.4.1 Introduction

As we have described in section 4.2.3, the assessment of design alternatives is commonly per-
formed by comparing their expected quality attributes to the respective quality requirements.
In the case where both the requirements and the estimations are expressed by crisp numbers,
this can be achieved in a straightforward manner. However, in the previous section we have
proposed extensions to the numeric expressions that can capture imperfect information. As a
result, the comparison operators for the evaluation of imperfect requirements and estimations
need to be defined for each combination of imperfection types. To achieve this, we define the
degree of acceptance as a number in the range [0,1], which indicates to which degree an esti-
mation falls within the acceptable interval of its respective requirement. A degree of accep-
tance of 1 indicates completely acceptable and a value of 0 indicates completely unacceptable.
For crisp requirements and estimations, the degree of acceptance will always be either 0 or
1.We define the comparison operators for imperfection models such that they return a uniform
degree of acceptance.

We define two functions for comparing requirements to estimations: Compavg for comparing
estimations to restrictions on the average, and Compmax for comparing estimations to restric-
tions on the maximum. The functions take a requirement and an estimation as parameters, and
return the degree of acceptance of the estimation for this requirement. Since Compmax only
differs from Compavg in case of probabilistic or fuzzy probabilistic estimations, for crisp and/
or fuzzy estimations both functions will be denoted by Comp. In these definitions, we indicate
the requirement with an a and the estimation is with a c. The degree of acceptance of estima-
tion c to requirement a therefore corresponds to Comp(a, c).

In this section, we define the comparison operators for requirements and estimations. We have
established that three types of requirements can be identified: crisp, imprecise and uncertain

xfp1 p,
n

x() p1 P1 α[]∈

0

∞

∫ pn Pn α[]∈

Imperfect Information in Software Design Processes

78

requirements. Imprecise requirements are described by means of fuzzy requirements and
uncertain requirements by means of probabilistic requirements. In addition, we have identified
that uncertain estimations are described by probabilistic, fuzzy or fuzzy probabilistic estima-
tions. In the following, we define the comparison operators for each type of requirement and
estimation.

4.4.2 Comparison Operators for Crisp Requirements

The first type of requirements that can be provided for the design process are crisp require-
ments. In this section, we define the comparison operators for probabilistic, fuzzy and fuzzy
probabilistic estimations with crisp requirements. Note that the comparison operators for crisp
requirements and crisp estimations has been omitted, since this corresponds to the trivial com-
parison of crisp numbers.

Probabilistic Estimations

Let the probabilistic estimation c be a probability density function f. For a crisp average
requirement a the degree of acceptance is:

Compavg(a, f) = 1 , if

Compavg(a, f) = 0 , otherwise

The degree of acceptance for a maximum requirement a is:

Compmax(a, f) =

Fuzzy Estimations

Let the fuzzy estimation be the triangular fuzzy number (c1, c2, c3) and the crisp requirement
be that the number is smaller than the number a. The degree of acceptance for evaluating fuzzy
estimations with crisp requirements is:

Comp(a, (c1, c2, c3)) = 0 , if

Comp(a, (c1, c2, c3)) = , if

Comp(a, (c1, c2, c3)) = , if &

Comp(a, (c1, c2, c3)) = , if

Comp(a, (c1, c2, c3)) = 1 , if

xf x() x a≤d

U

∫

f x() xd

x b≤
∫

a c1≤

a c1–

c3 c1–

c2 a–

c3 c1–

a c1–

c2 a–
------- 1+
 ln– c1 a c2≤<

a c1–

c3 c1–
--------- c2 a= a c3≤

a c1–

c3 c1–

a c– 2

c3 c1–
--------- 1

c3 a–

a c2–
-------+

 ln– c2 a c3≤<

a c3>

Chapter 4: Specification and Evaluation of Imperfect Quality Requirements and Estimations

79

In this definition we distinguished five cases, which correspond to the five positions the esti-
mation value can take with respect to the requirement interval. The expressions are special
cases of the more general expressions that compare fuzzy requirements with fuzzy estimations.
We elaborate on the derivation of these general expressions in section 4.4.3 and Appendix B.

Fuzzy Probabilistic Estimations

Fuzzy probabilistic estimations are defined as a fuzzy probability distribution with density
function . The expectation value E for a fuzzy probability is a fuzzy number, which
means that Compavg is equal to the function for comparing crisp requirements and fuzzy esti-
mations. The degree of acceptance a fuzzy probabilistic estimation with density function
for a crisp average requirement a is:

Compavg(a,) = Comp(a, E)

where

E[α] = { , ..., }

However, typically expectation values of fuzzy probability distributions are not triangular.
Therefore, the definition in the previous section can not be reused, but Compavg can be derived
according to the definitions in Appendix B. Compmax(a, fP) is defined to be the defuzzification
of the fuzzy number Q, which α-cuts are given by:

Compmax(a,) = Defuz(Q)

where

Q[α] = { , ..., }

This definition is similar to the definition for evaluating probabilistic estimations with crisp
requirements, since the probability is used of the requirements interval. However, here the
resulting probability is a fuzzy number. Therefore the function Defuz transforms the fuzzy
probability Q to a crisp number. For the actual defuzzification, any of the standard defuzzifica-
tion functions can be used as identified in section 2.4.4.

4.4.3 Comparison Operators for Imprecise Requirements

The first type of imperfection we have identified in quality requirements is impreciseness,
which we have modeled with fuzzy requirements. In this section, we define the comparison
operators for crisp, probabilistic, fuzzy and fuzzy probabilistic estimations with imprecise
requirements.

fp1 p, n

fp1 p, n

fp1 p, n

xfp1 p, n
x() p1 P1 α[]∈

0

∞

∫ pn Pn α[]∈

fp1 p, n

fp1 p, n
x() p1 P1 α[]∈

x a≤
∫ pn Pn α[]∈

Imperfect Information in Software Design Processes

80

Crisp Estimations

For the evaluation of crisp estimations with fuzzy requirements we define the degree of accep-
tance to be equal to the membership value of the crisp estimation c in the fuzzy interval (a1,
a2):

Comp((a1, a2), c) = 1 , if

Comp((a1, a2), c) = , if

Comp((a1, a2), c) = 0 , if

This function is a special case of the more general function that is used to compare fuzzy
requirements with fuzzy estimations, given in Appendix B.

Probabilistic Estimations

The second type of estimation is a probabilistic estimation. Let the estimation c be given by
density function f with expectation value m. The degree of acceptance for a fuzzy requirement
(a1, a2):

Compavg((a1, a2), m) = 1, if

Compavg((a1, a2), m) = , if

Compavg((a1, a2), m) = 0, if

For the definition of Compmax we have to consider the tolerance area of the fuzzy requirement
in the evaluation. When comparing crisp requirements to probabilistic estimations the follow-
ing expression is used:

This can be written as:

, with µ(x) = 1 for and µ(x) = 0 otherwise.

This means that µ(x) is the membership function of the crisp requirement interval. When this is
extended to fuzzy requirements, and we have a fuzzy maximum requirement with membership
function A, we get:

c a1≤

a2 c–

a2 a1–
--------- a1 c a2≤<

c a2>

m a1≤

a2 m–

a2 a1–
--------- a1 m a2≤<

m a2>

f x() xd

x a≤
∫

f x()µ x() xd

0

∞

∫ 0 x a≤ ≤

Chapter 4: Specification and Evaluation of Imperfect Quality Requirements and Estimations

81

Compmax(A, f) =

Fuzzy Estimations

Let the fuzzy estimation be the triangular fuzzy number (c1, c2, c3) and the fuzzy requirement
be the fuzzy interval (a1, a2). One of the possible positions these fuzzy entities can take with
respect to each other is depicted in Figure 4.11.

In this figure, the fuzzy estimation C is evaluated with respect to the fuzzy requirement A. This
is done by determining the portion of the interval [q, r] at height α that lies inside the require-
ment interval]- , p]. The degree of acceptance is found by generalizing this for all α:

Comp((a1, a2), (c1, c2, c3))

= 1 , if &

= , if &

= , if &

= , if & &

= , if &

= 0 , if &

The expressions above distinguish between six cases, which correspond to the six positions a
fuzzy estimation can take with respect to the fuzzy requirement interval. A more elaborate
explanation of these expressions and their derivation is given in Appendix B.

A x()f x() xd

0

∞

∫

1
A C

α

a1 a2c1 c2 c3pq r

M
e

m
b

e
rs

h
ip

�

1
A C

α

a1 a2c1 c2 c3pq r

M
e

m
b

e
rs

h
ip

�

Figure 4.11 Comparing Fuzzy Requirements and Fuzzy Estimations

∞

c2 a1≤ c3 a2≤

a2 c1–

c3 c1–

a1 c2–

c3 c1–
--------- 1

c3 a2–

a1 c2–
---------+

 ln+ c2 a1< c3 a2>

a2 c1–

c3 c1–
--------- c2 a1= c3 a2>

a2 c1–

c3 c1–

c2 a1–

c3 c1–

a2 c1–

c2 a1–
--------- 1+
 ln– c2 a1> c1 a2< c3 a2≥

1
c2 a1–

c3 c1–
--------- 1

c3 c1–

c2 a1– a2 c1–+
----------------------–

 ln+ c2 a1> c3 a2<

c2 a1> c1 a2≥

Imperfect Information in Software Design Processes

82

Fuzzy Probabilistic Estimations

Fuzzy probabilistic estimations are defined as a fuzzy probability distribution with density
function . The expectation value E for a fuzzy probability is a fuzzy number, which
means that Compavg is equal to the function for comparing fuzzy requirements and fuzzy esti-
mations. The degree of acceptance a fuzzy probabilistic estimation with density function
for a fuzzy average requirement a with membership function A is:

Compavg(a,) = Comp(a, E)

where

E[α] = { , ..., }

Typically, expectation values of fuzzy probability distributions or not triangular. Therefore,
the definition in the previous section can not be reused, but Compavg can be derived according
to the definitions in Appendix B. The degree of acceptance of a fuzzy probabilistic estimation
with density function for a fuzzy average requirement a with membership function A is:

Compmax(a,) = Defuz(Q)

where

Q[α] = { , ..., } }

This definition is similar to the definition for evaluating probabilistic estimations with fuzzy
requirements, since the requirements interval is multiplied with the density function. However,
here the resulting probability is a fuzzy number. Therefore the function Defuz transforms the
fuzzy number Q to a crisp number. For the actual defuzzification, any of the standard defuzzi-
fication functions can be used as identified in section 2.4.4

4.4.4 Comparison Operators for Uncertain Requirements

The second type of imperfect information we have identified for quality requirements is uncer-
tainty, for which we have defined a model based on probability density functions. Like to other
types of imperfect requirements, the comparison operators need to be defined for crisp, fuzzy
and fuzzy probabilistic estimations. For the evaluation of crisp and probabilistic estimations,
the standard operations from probability theory can be applied, much like we have done in the
definitions above. For the evaluation of fuzzy estimations with probabilistic requirements we
adopt the definition probabilistic requirements and fuzzy estimations. Let the requirement a be
given by density function f with expectation value m. The degree of acceptance to fuzzy esti-
mation c with membership function C is:

Compavg(m, (c1, c2)) = 0, if

fp1 p, n

fp1 p, n

fp1 p, n

xfp1 p,
n

x() p1 P1 α[]∈

0

∞

∫ pn Pn α[]∈

fp1 p, n

fp1 p,
n

A x()fp1 p, n
x() p1 P1 α[]∈

0

∞

∫ pn Pn α[]∈

m c1≤

Chapter 4: Specification and Evaluation of Imperfect Quality Requirements and Estimations

83

Compavg(m, (c1, c2)) = , if

Compavg(m, (c1, c2)) = 1, if

The degree of acceptance for a restriction on the maximum is:

Compmax(f, C) =

Above, we have defined models for the specification and evaluation of imperfect quality
requirements and estimations. When we incorporate these imperfection models in the evalua-
tion steps of the design tree model, we are now capable of including imperfect information in
the software development process. The quality based evaluation of design alternatives, which
has been defined in section 4.2.3, can compare imperfect requirements and non-crisp estima-
tions based on the definitions in this section.

4.5 Case Study: Storm Surge Barrier
To demonstrate the use of imperfection models for requirements and estimations, we revisit
the Remote Water Sensor example of section 4.2.5. In this example we have resolved three
design issues by identifying three alternatives per issue and evaluating them with respect to
their expected quality. The results of this evaluation and selection process are given in Table
4.5.

In this table the estimations were made using “traditional“ crisp numeric expressions and com-
pared to crisp quality requirements. The table shows that the development process results in a
system design with only one possible option for the third decision. The crisp evaluations of
option 3.1 and option 3.2 are very similar as well as very close to the boundary. When we
apply our approach to these evaluations, we expect the overall quality of these options to be

c2 m–

c2 c1–
--------- c1 m c2≤<

m c2>

f x()C x() xd

0

∞

∫

Table 4.5 Design Decisions Evaluation

A
v
er

ag
e

P
er

fo
rm

an
ce

M
ax

im
u
m

P
er

fo
rm

an
ce

R
el

ia
b
il
it
y

C
o
st

Q
u
al

it
y
1

Q
u
al

it
y
2

Q
u
al

it
y
3

Q
u
al

it
y
4

O
v
er

al
l
Q

u
al

it
y

Design Decision 1
Opt. 1.1 400 400 180 1 1 1 1 1
Opt. 1.2 350 350 190 1 1 1 1 1
Opt. 1.3 300 300 230 1 1 1 0 0

Design Decision 2 after choosing option 1.2
Opt. 2.1 400 0 190 1 0 0 1 0
Opt. 2.2 400 650 200 1 1 1 1 1
Opt. 2.3 450 450 13 205 1 1 1 1 1

Design Decision 3 after choosing option 2.3
Opt. 3.1 510 510 9.5 205 0 1 1 1 0
Opt. 3.2 500 500 10 225 1 1 1 1 1
Opt. 3.3 850 850 12 300 0 0 1 0 0

∞
∞
∞

∞
∞

Imperfect Information in Software Design Processes

84

much closer. In the following we introduce the three different types of imperfection into the
estimations and evaluate them with perfect and imprecise (fuzzy) requirements.

4.5.1 Selection of Alternatives with Uncertainty in Quality Estimations

First, we introduce uncertainty in the estimations that are made on the expected quality of the
final system. The difference between the estimated quality and the eventual quality of the sys-
tem can have a considerable impact on the design process. We evaluate the uncertain estima-
tions with the crisp requirement specification of section 4.2.5.

Probabilistic Estimations for Performance

Let for our example the performance estimations be based on probability models, rather than
crisp numbers. This represents the fact that at any given time the response time of the system
depends on the amount of requests that are waiting in the request queue of the Remote Water
Sensor. In our case we assume that the exponential distribution, given by f(x) = λ*e-λx, is used
to model the expected response times. Its expectation value is 1/λ, which means that the actual
estimation is performed with respect to its parameter λ of the density function. We re-evaluate
the results from the table using the definitions for crisp requirements and probabilistic estima-
tions. Note that in this and subsequent tables the new imperfect estimations and evaluations are
indicated by bold numbers.

In Table 4.6 describe the performance estimations, which are done based on exponential prob-
ability distributions. In the table this is shown by making the maximum estimated response
time infinitely large (indicated by). The parameter that indicates which exponential density
function is used, is indicated in the second column. The value for Q2 in the table corresponds
to the fraction of the response times that fall in the requirement interval [0, 650]. The evalua-
tion results remain largely the same, although we can see that the use of probabilistic estima-
tions gives us an indication of the risk with respect to the performance quality.

Table 4.6 Decisions Evaluation with Probabilistic Performance Estimations

λ A
v
er

ag
e

P
er

fo
rm

an
ce

M
ax

im
u
m

P
er

fo
rm

an
ce

R
el

ia
b
il
it
y

C
o
st

Q
u
al

it
y
1

Q
u
al

it
y
2

Q
u
al

it
y
3

Q
u
al

it
y
4

O
v
er

al
l
Q

u
al

it
y

Design Decision 1
Opt. 1.1 1/400 400 180 1 0.803 1 1 0.803
Opt. 1.2 1/350 350 190 1 0.844 1 1 0.844
Opt. 1.3 1/300 300 230 1 0.885 1 0 0

Design Decision 2 after choosing option 1.2
Opt. 2.1 1/400 400 0 190 1 0.803 0 1 0
Opt. 2.2 1/400 400 200 1 0.803 1 1 0.803
Opt. 2.3 1/450 450 13 205 1 0.764 1 1 0.764

Design Decision 3 after choosing option 2.3
Opt. 3.1 1/510 510 9.5 205 0 0.720 1 1 0
Opt. 3.2 1/500 500 10 225 1 0.727 1 1 0.727
Opt. 3.3 1/850 850 12 300 0 0.534 1 0 0

∞ ∞
∞ ∞
∞ ∞

∞
∞ ∞
∞

∞
∞
∞

∞

Chapter 4: Specification and Evaluation of Imperfect Quality Requirements and Estimations

85

Fuzzy Estimations of Reliability and Cost

The second type of uncertainty that can be introduced in quality estimations is by means of
fuzzy estimations. For instance, instead of a total cost of 200 k€ for the Remote Water Sensor,
the best specification that can be given is approximately 200 k€. For our case we take the esti-
mations for both the reliability and the cost to be fuzzy estimations. In the table below the reli-
ability and cost attributes are expressed and evaluated using triangular fuzzy numbers (see
section 4.3.3).

In Table 4.7 the reliability estimation ranges -1 second to +1 of the original, crisp estimation
and the cost estimation ranges from -25 k€ to +25 k€ of the crisp estimation. As can be seen in
the table, this small variation in the cost and reliability estimation results in a substantially dif-
ferent overall evaluation of the alternatives. For instance, the crisp reliability estimation for
option 3.2 was exactly equal to the boundary of the requirement interval. However, with the
fuzzy estimation, half of the variance is outside the requirement interval, which leads to a
much lower evaluation. This reflects the fact that only a small variation in this case results in
an alternative of unacceptable quality. Also we see that option 2.2 is now rated higher than
option 2.3 compared to the crisp evaluation, and option 3.2 receives a very low quality evalua-
tion compared with the value in the previous table.

Fuzzy Probabilistic Estimations for Performance

Fuzzy probabilistic estimation are used in the case it is difficult to precisely define the parame-
ters of the density function that is used. Let for our example the estimation of performance be
done with an exponential fuzzy probability distribution [Buckley2003]. This means that the
parameter λ in f(x) = λ*e-λx is replaced by a fuzzy number, denoted by λf. In our example, λ is
replaced by a triangular fuzzy number (λ-0.0005, λ, λ+0.0005), which corresponds to a vari-
ance in the expectation value of the response time. This leads to the following evaluation
results:

Table 4.7 Decisions Evaluation with fuzzy estimations for reliability and cost

λ A
v
er

ag
e

P
er

fo
rm

an
ce

M
ax

im
u
m

P
er

fo
rm

an
ce

R
el

ia
b
il
it
y

C
o
st

Q
u
al

it
y
1

Q
u
al

it
y
2

Q
u
al

it
y
3

Q
u
al

it
y
4

O
v
er

al
l
Q

u
al

it
y

Design Decision 1
Opt. 1.1 1/400 400 (155,180,205) 1 0.803 1 1 0.803

Opt. 1.2 1/350 350 (165,190,215) 1 0.844 1 1 0.844

Opt. 1.3 1/300 300 (205,230,255) 1 0.885 1 0.239 0.212
Design Decision 2 after choosing option 1.2
Opt. 2.1 1/400 400 0 (165,190,215) 1 0.803 0 1 0

Opt. 2.2 1/400 400 (175,200,225) 1 0.803 1 1 0.803

Opt. 2.3 1/450 450 (12,13,14) (180,205,230) 1 0.764 1 0.983 0.751
Design Decision 3 after choosing option 2.3
Opt. 3.1 1/510 510 (8.5,9.5,10.5) (180,205,230) 0 0.720 0.076 0.983 0

Opt. 3.2 1/500 500 (9,10,11) (200,225,250) 1 0.727 0.5 0.5 0.182

Opt. 3.3 1/850 850 (11,12,13) (275,300,325) 0 0.534 1 0 0

∞ ∞
∞ ∞
∞ ∞

∞
∞ ∞
∞

∞
∞
∞

Imperfect Information in Software Design Processes

86

In the table fx stands for a fuzzy number with the highest degree of membership at x. This is
non-triangular fuzzy number, which is the fuzzy average of the fuzzy probability distribution.
For more information, see chapter 2. From the table it can be seen that a fuzzy probabilistic
estimation for reliability severely influences the degree of fulfillment for individual quality
attributes. Option 3.2 even has an evaluation of 0.079, while in the crisp evaluation it had an
evaluation of 1. Clearly this is caused by the fact that all the estimations were very close or
even equal to the boundary of the interval of acceptable values, which means that a slight vari-
ation has a considerable impact. The results in the table can be depicted in the following design
tree.

Table 4.8 Decisions Evaluation with fuzzy probabilistic estimations for performance

λf A
v
er

ag
e

P
er

fo
rm

an
ce

M
ax

im
u
m

P
er

fo
rm

an
ce

R
el

ia
b
il
it
y

C
o
st

Q
u
al

it
y
1

Q
u
al

it
y
2

Q
u
al

it
y
3

Q
u
al

it
y
4

O
v
er

al
l
Q

u
al

it
y

Design Decision 1

Opt.

1.1

(1/400-1/2000,
1/400,

1/400+1/2000)
f400 (155,180,205) 1 0.798 1 1 0.798

Opt.

1.2

(1/350-1/2000,
1/350,

1/350+1/2000)
f350 (165,190,215) 1 0.840 1 1 0.840

Opt.

1.3

(1/300-1/2000,
1/300,

1/300+1/2000)
f300 (205,230,255) 1 0.882 1 0.239 0.210

Design Decision 2 after choosing option 1.2

Opt.

2.1

(1/400-1/2000,
1/400,

1/400+1/2000)
f400 0 (165,190,215) 1 0.798 0 1 0

Opt.

2.2

(1/400-1/2000,
1/400,

1/400+1/2000)
f400 (175,200,225) 1 0.798 1 1 0.798

Opt.

2.3

(1/450-1/2000,
1/450,

1/450+1/2000)
f450 (12,13,14) (180,205,230) 0.872 0.758 1 0.983 0.650

Design Decision 3 after choosing option 2.3

Opt.

3.1

(1/510-1/2000,
1/510,

1/510+1/2000)
f510 (8.5,9.5,10.5) (180,205,230) 0.301 0.713 0.076 0.983 0.016

Opt.

3.2

(1/500-1/2000,
1/500,

1/500+1/2000)
f500 (9,10,11) (200,225,250) 0.438 0.720 0.5 0.5 0.079

Opt.

3.3

(1/850-1/2000,
1/850,

1/850+1/2000)
f850 (11,12,13) (275,300,325) 0 0.522 1 0 0

∞ ∞

∞ ∞

∞ ∞

∞

∞ ∞

∞

∞

∞

∞

Chapter 4: Specification and Evaluation of Imperfect Quality Requirements and Estimations

87

In Figure 4.12, it can be seen that the evaluation of the alternatives during the first two design
decisions has been considerably optimistic in the case of crisp requirements. When the uncer-
tainty in the estimations is modeled explicitly using probabilistic and fuzzy set models, the
alternatives have a much lower quality evaluation than the crisp case. Also, by including
imperfect information in the evaluation process, the evaluation of options 3.1 and 3.2 become
almost zero, which implies that is better to continue with the “Comm 2” node, since from here
a much better quality is expected.

4.5.2 Selection of alternatives with Impreciseness in Quality Requirements
and Uncertainty in Quality Estimations

As in the estimations, imperfection can also manifest itself in the requirements. However, in
the case of requirements it represents a certain tolerance with respect to the requirement
boundary. For the Remote Water Sensor example we introduce a certain amount of tolerance
in the boundaries of PR1, PR2, PR3 and PR4, which is represented by fuzzy requirements.

PR1: The average response time must be within (500, 600) milliseconds

PR2: The maximum response time must be within (650, 750) milliseconds

PR3: In case of failure, the system must be able to keep running for (8, 10) seconds

PR4: The system must cost no more than (225, 235) k€

To analyze how these fuzzy requirements influence the evaluation result, we evaluate the alter-
natives with crisp, fuzzy and fuzzy probabilistic estimations. For the evaluation with crisp esti-
mations, this leads to the following table:

Server 1 Server 2 Server 3

Comm. 1 Comm. 2 Comm. 3

Algorithm 1 Algorithm 2 Algorithm 3

0.798 0.840 0.210

0 0.798 0.650

0.016 0.079 0

Figure 4.12 Design Tree with Uncertain Estimations

Imperfect Information in Software Design Processes

88

In Table 4.9 the evaluations are largely the same as with crisp requirements. However, the
evaluation of option 3.1 changes considerably. With crisp requirements for both the average
performance and the reliability the estimations did not offer sufficient quality. But since the
estimations were very close to the requirement interval, the use of fuzzy requirements changes
the evaluation of reliability from 0 to 0.75 since 9.5 is inside the tolerance range of the fuzzy
requirement. In an analogue manner the evaluation of the average performance changes from 0
to 0.9. While option 3.2 still has the best overall quality, option 3.1 now is evaluated with con-
siderably better quality than before. In a similar manner the evaluation of option 1.3 changes.

Probabilistic Estimations for Performance

As in the previous section, in the second step we estimate the response times of the design
alternatives with exponential probability distributions. When we re-evaluate the design alter-
natives, this results in the following table:

Table 4.9 Evaluating fuzzy requirements with crisp estimations

A
v
er

ag
e

P
er

fo
rm

an
ce

M
ax

im
u
m

P
er

fo
rm

an
ce

R
el

ia
b
il
it
y

C
o
st

Q
u
al

it
y
1

Q
u
al

it
y
2

Q
u
al

it
y
3

Q
u
al

it
y
4

O
v
er

al
l
Q

u
al

it
y

Design Decision 1
Opt. 1.1 400 400 180 1 1 1 1 1
Opt. 1.2 350 350 190 1 1 1 1 1
Opt. 1.3 300 300 230 1 1 1 0.5 0.5

Design Decision 2 after choosing option 1.2
Opt. 2.1 400 0 190 1 0 0 1 0
Opt. 2.2 400 650 200 1 1 1 1 1
Opt. 2.3 450 450 13 205 1 1 1 1 1

Design Decision 3 after choosing option 2.3
Opt. 3.1 510 510 9.5 205 0.9 1 0.75 1 0.675
Opt. 3.2 500 500 10 225 1 1 1 1 1
Opt. 3.3 850 850 12 300 0 0 1 0 0

∞
∞
∞

∞
∞

Chapter 4: Specification and Evaluation of Imperfect Quality Requirements and Estimations

89

In Table 4.10, it can be seen that the overall evaluations are somewhat lower, in conformance
with the evaluations of probabilistic estimations with crisp requirements. Additionally, we
again see that option 3.1 and 3.2 do not differ much with respect to their overall evaluation.

Fuzzy Estimations of Reliability and Cost

As with crisp requirements we now introduce fuzzy estimations for performance for the evalu-
ation with fuzzy requirements. We again take a variance of one second for reliability and 25k€
for the system cost. In the table below the reliability and cost attributes are expressed and eval-
uated using triangular fuzzy numbers (see section 4.3.3).

Table 4.10 Evaluating fuzzy requirements with probabilistic estimations

λ A
v
er

ag
e

P
er

fo
rm

an
ce

M
ax

im
u
m

P
er

fo
rm

an
ce

R
el

ia
b
il
it
y

C
o
st

Q
u
al

it
y
1

Q
u
al

it
y
2

Q
u
al

it
y
3

Q
u
al

it
y
4

O
v
er

al
l
Q

u
al

it
y

Design Decision 1
Opt. 1.1 1/400 400 180 1 0.826 1 1 0.826
Opt. 1.2 1/350 350 190 1 0.864 1 1 0.864
Opt. 1.3 1/300 300 230 1 0.903 1 0.5 0.452

Design Decision 2 after choosing option 1.2
Opt. 2.1 1/400 400 0 190 1 0.826 0 1 0
Opt. 2.2 1/400 400 200 1 0.826 1 1 0.826
Opt. 2.3 1/450 450 13 205 1 0.788 1 1 0.788

Design Decision 3 after choosing option 2.3
Opt. 3.1 1/510 510 9.5 205 0.9 0.746 0.75 1 0.504
Opt. 3.2 1/500 500 10 225 1 0.753 1 1 0.753
Opt. 3.3 1/850 850 12 300 0 0.561 1 0 0

∞ ∞
∞ ∞
∞ ∞

∞
∞ ∞
∞

∞
∞
∞

Table 4.11 Fuzzy Requirements with fuzzy estimations for reliability and cost

λ A
v
er

ag
e

P
er

fo
rm

an
ce

M
ax

im
u
m

P
er

fo
rm

an
ce

R
el

ia
b
il
it
y

C
o
st

Q
u
al

it
y
1

Q
u
al

it
y
2

Q
u
al

it
y
3

Q
u
al

it
y
4

O
v
er

al
l
Q

u
al

it
y

Design Decision 1
Opt. 1.1 1/400 400 (155,180,205) 1 0.826 1 1 0.826

Opt. 1.2 1/350 350 (165,190,215) 1 0.864 1 1 0.864

Opt. 1.3 1/300 300 (205,230,255) 1 0.903 1 0.257 0.232
Design Decision 2 after choosing option 1.2
Opt. 2.1 1/400 400 0 (165,190,215) 1 0.826 0 1 0

Opt. 2.2 1/400 400 (175,200,225) 1 0.826 1 1 0.826

Opt. 2.3 1/450 450 (12,13,14) (180,205,230) 1 0.788 1 1 0.788
Design Decision 3 after choosing option 2.3
Opt. 3.1 1/510 510 (8.5,9.5,10.5) (180,205,230) 0.9 0.746 0.725 1 0.487

Opt. 3.2 1/500 500 (9,10,11) (200,225,250) 1 0.753 1 0.7 0.527

Opt. 3.3 1/850 850 (11,12,13) (275,300,325) 0 0.561 1 0 0

∞ ∞
∞ ∞
∞ ∞

∞
∞ ∞
∞

∞
∞
∞

Imperfect Information in Software Design Processes

90

In Table 4.11, we can see that the fuzzy estimations and fuzzy requirements have considerably
influenced the evaluations compared to the completely crisp case. Intuitively, the evaluations
describe the situation more accurately, since the estimations for a number of alternatives dif-
fered only slightly while their evaluations where completely different.

Fuzzy Probabilistic Estimations of Performance

Finally, we evaluate the design alternatives with the fuzzy requirements, while using fuzzy
probabilistic estimations for the performance. We again assume an exponential distribution
with fuzzy parameter (λ-0.0005, λ, λ+0.0005), which corresponds to a variance in the expec-
tation value of the response time. This leads to the following evaluation results:

In Table 4.12, the most obvious changes with respect to the crisp evaluation remain option 1.1,
with an evaluation larger than 0, and options 3.1 and 3.2 with almost equal evaluation. From
the application of imperfect information models in the quality based evaluation of design alter-

Table 4.12 Decisions Evaluation with fuzzy probabilistic estimations for performance

λf A
v
er

ag
e

P
er

fo
rm

an
ce

M
ax

im
u
m

P
er

fo
rm

an
ce

R
el

ia
b
il
it
y

C
o
st

Q
u
al

it
y
1

Q
u
al

it
y
2

Q
u
al

it
y
3

Q
u
al

it
y
4

O
v
er

al
l
Q

u
al

it
y

Design Decision 1

Opt.

1.1

(1/400-1/2000,
1/400,

1/400+1/2000)
f400 (155,180,205) 1 0.908 1 1 0.908

Opt.

1.2

(1/350-1/2000,
1/350,

1/350+1/2000)
f350 (165,190,215) 1 0.933 1 1 0.933

Opt.

1.3

(1/300-1/2000,
1/300,

1/300+1/2000)
f300 (205,230,255) 1 0.956 1 0.257 0.246

Design Decision 2 after choosing option 1.2

Opt.

2.1

(1/400-1/2000,
1/400,

1/400+1/2000)
f400 0 (165,190,215) 1 0.908 0 1 0

Opt.

2.2

(1/400-1/2000,
1/400,

1/400+1/2000)
f400 (175,200,225) 1 0.908 1 1 0.908

Opt.

2.3

(1/450-1/2000,
1/450,

1/450+1/2000)
f450 (12,13,14) (180,205,230) 0.872 0.881 1 1 0.881

Design Decision 3 after choosing option 2.3

Opt.

3.1

(1/510-1/2000,
1/510,

1/510+1/2000)
f510 (8.5,9.5,10.5) (180,205,230) 0.655 0.848 0.725 1 0.403

Opt.

3.2

(1/500-1/2000,
1/500,

1/500+1/2000)
f500 (9,10,11) (200,225,250) 0.829 0.853 1 0.7 0.495

Opt.

3.3

(1/850-1/2000,
1/850,

1/850+1/2000)
f850 (11,12,13) (275,300,325) 0 0.678 1 0 0

∞ ∞

∞ ∞

∞ ∞

∞

∞ ∞

∞

∞

∞

∞

Chapter 4: Specification and Evaluation of Imperfect Quality Requirements and Estimations

91

natives, we have now seen that the evaluation results more accurately reflect the risks and intu-
ition of the software engineer. To analyze the influence on the design decisions, we now depict
the design tree that results from the evaluations of Table 4.12.

The sequence of design decisions and the selection of design alternatives with crisp require-
ments and estimations is depicted in Figure 4.13. The evaluation of the design alternatives has
been replaced with the evaluations from Table 4.12. The design process with crisp require-
ments and estimations resulted in a system design with Server 2, Comm. 3 and Extrapolation
Algorithm 2, which was the only one with acceptable quality. In the design tree with imperfect
information we see that this node has an expected quality of 0.495, which does not differ much
from option 3.1. Additionally, and even more importantly, we see that for the second design
decision a node was selected with quality 0.881, while there was another option with a higher
expected quality. The application of the design tree approach with imperfect information mod-
els would, in this example, have resulted in an alternative design than with crisp requirements
and estimations.

4.6 Related Work

4.6.1 Traceability of Design Decisions in Software Engineering

Keeping track of the design decisions that are taken during the design process is not new. In
[Parnas1976], the concept of tracing design decisions in a tree structure was proposed in order
to identify the commonality and differences between intermediate program designs. This con-
cept also underlies the design tree approach. However, our approach builds on this concept
with the definition of configurable design strategies and the possibility of quality-based evalu-
ation of design with both perfect and imperfect information. In the field of requirements trace-
ability the relationship between intermediate design artifacts and the originating
requirement(s) are made explicit. The models that have been proposed in this field can be clas-
sified according to the specific type of information they aim to capture, such as functional or

Server 1 Server 2 Server 3

Comm. 1 Comm. 2 Comm. 3

Algorithm 1 Algorithm 2 Algorithm 3

0.908 0.933 0.246

0 0.908 0.881

0.403 0.495 0

Figure 4.13 Design Tree with Uncertain Estimations
and Imprecise Requirements

Imperfect Information in Software Design Processes

92

non-functional tracing, forward or backward tracing, etc. In case the design trees are used to
capture design decisions, the solution is in the area of non-functional requirements tracing.
Most approaches that haven been proposed to trace design decisions are based on decision tree
models. In [Potts1988] and [Ran1996] alternative approaches are described for capturing
design decisions and their motivations, which are similar to the design tree approach. Design
artifacts are captured using a graph structure, as well as relevant design considerations. How-
ever, in contrast with the design tree approach, it is not possible to traverse the graph structure
in order to decide on the subsequent design trajectory in a configurable manner. In
[Cmitile1992], design decisions are recorded as annotations to enhance software maintenance.
These annotations are used to trace the decisions that have been taken with respect to trans-
forming an intermediate design into a design for a specific implementation language. In gen-
eral, it can be said that requirement traceability approaches are custom made for a particular
application area, and contain domain-specific model attributes. This makes it difficult to reuse
and compare traceability models. For this purpose work has been done in creating reference
models for requirements traceability [Ramesh2001]. The model aims to provide the relevant
elements of a traceability model, to which only the domain specific elements need to be added.
By adjusting the design tree model to conform to the basic elements of the reference model,
these respective qualities can also be achieved. In the area of design rationale management,
many approaches have been proposed, which can be used to capture relevant information that
is the result of the design process. Depending on the nature of the design process, different
types of approaches are used. In [Regli2000] a distinction is made between a feature-oriented
and a process-oriented approach for capturing design rationale. In feature-oriented approaches,
design rationale is captured in domains that are well-known and standardized. Process-oriented
approaches emphasize design rationale as a history of the design process, and are used in
domains where problems are vague and the solutions poorly understood. Examples of such
approaches are [Lee1991] and [McCall1991]. However, where design rationale management
approaches aim to capture the intuitions and validations of design decisions, they do not
explicitly consider imperfection, even when they are aware of the fact that the domain contains
this. In the Design Tree Model the design rationale based on the expected quality for each
design decision is captured, and the approach supports imperfection in both requirements and
estimations.

4.6.2 Modeling Imperfect Information in Design Processes

The most well-known area in software engineering in which the potential consequences of
imperfect information are considered is risk management [Karolak1995]. In this area the influ-
ence of probabilistic events is analyzed in, for instance, software design processes. However,
the techniques that are proposed in this field address a different type of imperfection than our
approach. In our approach we try to facilitate imperfection in requirement specifications and
quality estimations, and we have identified different types of imperfection that can occur. As
such, our approach is not in particular a risk management approach, but rather a refinement of
software development activities. In [Gregoriades2005], a scenario-based assessment method
for non-functional requirements is presented. This approach focuses in particular on the human
errors that can be introduced by slips of mind, difficulty of tasks, etcetera. The probabilities of
these errors, and their effect on the correctness of the non-functional requirements is then
assessed by use of Bayesian Belief Nets. The work presented in [Bubenko1994] focuses on the
identification and removal of imperfection in requirements specification. This is achieved by
the definition of a number of metamodels that reflect the business, their goals and the require-
ments. From these, a formal (perfect) definition of the requirements is derived. In [Egyed2006]
an approach is proposed, which enables the systematic analysis of the removal of ambiguous
specifications. By modeling the available information and restrictions using constraint net-
works, design alternatives can be evaluated with respect to consistency. In other disciplines,
the influence of imperfect information on design activities is also recognized. For example, in

Chapter 4: Specification and Evaluation of Imperfect Quality Requirements and Estimations

93

the field of mechanical engineering extensions have been proposed that can express fuzzy
requirements in a manner comparable to the one presented in this chapter [Antonsson1996].
This approach presents the Level Interval Algorithm to reason with the representations for
imperfection.

4.7 Discussion
How do we acquire the applicable fuzzy sets and probability distributions to describe
imperfection in quality requirements and estimations?

The accuracy of the result of the design tree approach depends on how well the imperfection
models describe the situation at hand. However, the usage of this approach is not a straightfor-
ward activity. While it is true that the use of imperfection models adds an extra level of diffi-
culty to the design process, in our early experiments the definitions were quite natural for the
users. The variance that might exist in quality requirements such as performance was easily
captured by defining the boundaries of triangular fuzzy numbers. In addition, it should be
noted that probability distributions have long been used to model, for instance, performance of
computer systems with a probabilistic nature. Additionally, fuzzy set theory offers the possibil-
ity to use linguistic variables [Zadeh1975] to refer to standard definitions of fuzzy sets within a
particular area. While the actual definition of the fuzzy sets and/or probability distributions is
by no means trivial, it is important to note that in current methods all kinds of crisp design
rules are used which are not justifiable. For example, in requirements specification methods
nouns are identified as candidate classes, even while this is not generally accurate. From this
perspective, using probability theory and fuzzy set theory, while requiring additional insights,
can be considered to be more precise.

Can the inclusion of imperfect information in software development lead to systems that
do not fulfil any requirements?

The models that are proposed in this thesis enable the consideration of imperfect information
during software development. The specific nature of these models allows the software engi-
neer to include multiple opinions from various stakeholders, which are modeled using, for
example, fuzzy sets. With the inclusion of the inputs and opinions of multiple stakeholders, it
could be possible that the restrictions on the final system become so numerous that it becomes
impossible to fulfil any of them. While this prospect is not unthinkable, it should also be noted
that the extensions and models that have been proposed are not aimed at this purpose. Require-
ment specifications should be made as precise as possible, and stakeholders should agree (to a
certain degree) on what they expect from the software system. The goal of our approach is to
support the design process with support for imperfection, such that the impact imperfection
can have is minimized. Obviously, this is only possible within certain limits, which means that
the initial requirements that are provided by the stakeholders should be a workable starting
point. To facilitate the difficulties that can be encountered during this initial definition process,
future work in this area can include for example conflict resolution techniques and precedence
mechanisms.

Is the order in which design decisions are addressed important for the design tree
approach?

As a prerequisite for the design tree approach an ordered set of design issues is assumed as
input for the software design process. Since the selection of a design alternative for a given
design issue can influence the available design alternatives and quality expectations for subse-
quent decisions, it seems necessary to address the design issues in the correct order for the
design tree approach to work. However, from an optimization point-of-view this is not the

Imperfect Information in Software Design Processes

94

case. The design strategies always select the best node according to their respective interest,
which in worst case scenarios means that the entire principle design tree will be explored. In
the case that the order of design issues hampers the development process, this could mean that
the design strategy advises to revisit this level of the design tree very frequently. While this
requires considerable effort, eventually the correct alternatives will be selected and a satisfac-
tory design will be found. Nonetheless, the order of design issues should be considered care-
fully, since a logical order with respect to the problems that are addressed will decrease the
number of iterations. In addition, the frequent reiteration to a particular level of the design tree
can indicate a misordering in the set of design issues. By analyzing the iterative behavior, soft-
ware engineers can become aware of these problems and establish an improved order among
the design issues.

Can fuzzy logic/fuzzy set theory and probability theory model the imperfection in quality
requirements and estimations appropriately?

In our approach we use probability theory and fuzzy set theory to model the imperfection that
can occur in the software development process. It can be questioned how well these models are
able to capture the nature of the imperfection that can occur in design information. The nature
of the imperfection does not necessarily correspond to the way in which imperfection is mod-
eled in probability and fuzzy set theory. But while it is true that these models do not always
reflect the actual nature of imperfection that can be found, it is certain that these models
address the issue of imperfection more accurately than ignoring the imperfection in the design
information, and trying to resolve it at later stages solely by iteration and incremental design.
With the use of probability and fuzzy set theory we cover part of the imperfection that can
occur in design information with well-known imperfection models, which address these types
of imperfection in a correct manner.

4.8 Conclusions
In section 4.2 imperfect information in quality requirements and quality estimations and the
cascading of errors in design decisions were identified as two important problems in the design
of software systems. The first problem can lead to making wrong decisions during the design
process, since quality assessments do not represent the current situation accurately. The second
problem is a direct consequence of the sequential nature in which design decisions are taken,
which causes errors in individual decisions to influence the correctness of all decisions hereaf-
ter. Additionally, even when it becomes clear that the current design has not been the right
choice, it is not easy to step back through the design process and to determine the point from
which to continue.

We have shown that imperfect information can be managed by capturing the nature of the
imperfection. To accomplish this, we have made the explicit distinction between impreciseness
in quality requirements and uncertainty in quality estimations. By capturing both types of
imperfect information and their specific character with applicable models such as probability
theory or fuzzy set theory, the design alternatives considered during the design process can be
evaluated more accurately. Furthermore, the means of comparing different types of imperfect
information are defined, to enable the software engineer to evaluate design alternatives in
much the same manner as in current approaches. This has been demonstrated by applying the
approach to an example case, where two design alternatives were estimated to have very simi-
lar qualities. In the traditional evaluation method one alternative was evaluated as being unsat-
isfactory, since the quality attributes were just outside the quality constraints. When the design
alternatives were evaluated using our approach, the alternatives showed that the quality was
quite comparable, much like what was expected. Also, our approach indicated that traditional

Chapter 4: Specification and Evaluation of Imperfect Quality Requirements and Estimations

95

design approaches could not distinguish between two design alternatives, while our approach
offered specific insights into the strong points and risks of each design alternative.

In addition we have shown that the design process can be supported by tracing the design deci-
sions that are made. For each design decision the considered alternatives are logged, and the
evaluations are made explicit. To accomplish this, we have facilitated the use of imperfection
models in quality requirements, which restrict the allowed behavior of the system, and quality
estimations, which describe the expected behavior of the system. The relationship between
these elements is captured by a tree structure, which can be traversed in an algorithmic manner,
such that the design space can be explored systematically. This approach is completed by the
ability to define configurable design strategies, that can offer decision advice based on mana-
gerial motives, such as development time minimization or quality maximization. With these
design strategies, iterative design is supported in a systematic manner by means of exploration
of the design tree. By combining the design strategies with support for imperfect information
models, corrective design through incremental design steps can be considered in the context of
this imperfection. With this model, the state of the available information can be captured more
accurately than is supported by traditional development methods. The reasoning and optimiza-
tion capabilities of the design tree model ensure that the imperfection is considered in a sys-
tematic and correct manner. The design tree model ensures that the decision making process
based on this information considers the imperfection and its consequential risks accordingly.

The design tree approach combined with the imperfect information models creates additional
effort for the software engineers during the software development process, when performed
manually. To support the software engineer in the application of this approach, tooling has
been developed as part of this research. The tooling supports the software engineer with the
tracing of design decisions and contemplated alternatives with support for imperfect informa-
tion. The tooling that has been implemented for the approach is described in chapter 6. In chap-
ter 7 we explore the applicability and usability of the approach by applying the tooling in a
pilot study. The results of this pilot study are used to evaluate the approach proposed in this
chapter.

Imperfect Information in Software Design Processes

96

Chapter 5: Software Project Management with Probabilistic Market Demands

97

C H A P T E R

Chapter 0SOFTWARE PROJECT MANAGEMENT WITH
PROBABILISTIC MARKET DEMANDS

5.1 Introduction
In general, software requirements do not remain constant during the lifetime of a software sys-
tem. The new requirements force the software engineers to adjust the software system accord-
ingly, which can range from minor revisions to complete redesigns of the existing software.
Although there are differences in the definitions and the impact, several case studies have
shown that a considerable amount of project costs is spent on this kind of software mainte-
nance [Kniesel2002]. Changes in requirements do not only impact software systems, but can
also result in the need to reschedule the software development process. For example, a change
in market demands can make it necessary to redistribute human resources to ensure that the
required software systems are delivered on time. For software that is developed in stand-alone
projects this is not necessarily problematic, since for instance it can be possible to renegotiate
the delivery date. However, with the increased focus on application frameworks and product
line architectures, software developers are faced with multiple products and product families,
each of which are demanded at different points in time. It is up to the software engineer and the
project manager to deliver the desired products on time, or they will miss out on the opportu-
nity. Timely delivery is, therefore, very important for the success of software products, but the
effective scheduling of the implementation is hindered by the uncertainty about the changes
that can occur in future market demands.

This chapter proposes an approach for systematic derivation of resource allocation schedules,
which can be used during the development of product families under uncertain market demand
expectations. By estimating changes in market demands and constructing models for the repre-
sentation of demand scenarios and allocation decisions, the approach determines resource allo-
cation advice based on the workstate and demand characteristics.

“Without even the safety valve of dreaming, he focused his prescient
awareness, seeing it as a computation of most probable futures, but
with something more, an edge of mystery--as though his mind dipped
into some timeless stratum and sampled the winds of the future.”

- From Frank Herbert’s Dune [Herbert2005]

Imperfect Information in Software Design Processes

98

5.2 Resource Scheduling Problems due to Uncertain Market
Demands

5.2.1 Introduction

In recent years, software has been applied in an increasing number of areas. In order to address
the increasing demand for software products, software design has focused on the systematic
reuse of generic parts and components with, for example, application frameworks [Fayad1999]
and product line architectures [Pohl2005]. Both approaches aim to come to a design from
which a range of similar products can be derived, with product lines facilitating the reuse on an
architectural level and application frameworks on an implementation level. To facilitate this
reuse of functionality, a distinction is made between commonalities and variabilities. Com-
monalities are components or architectural entities that will be used in a considerable number
of the products. These commonalities become reusable assets in the design, which can be used
as building blocks of core functionality. The variabilities are the properties that can differ from
product to product, and as such can not be captured in reusable assets. By using the commonal-
ity components and extending them with product specific attributes, a range of products can be
produced more efficiently. This approach is in particular successful when a range of similar
products should be delivered that share large parts of functionality.

While the implementation of product families with these approaches becomes more cost-effec-
tive, their design and implementation is a difficult and costly operation. In addition to the
implementation of reusable assets, reuse and adoption during the production of new products
must be facilitated. Nonetheless, it is important that the framework implementation does not
interfere with the implementation of these products, to ensure the timely delivery of products
with respect to the market demands. However, typically the amount of work exceeds the avail-
able resources, and, as a result, the implementation order of the commonalities and products
needs to be scheduled, so that the implementation and delivery of products is possible at the
time at which they are demanded.

5.2.2 Scheduling Software Development Processes

Assume that a large set of components has to be implemented in a time span of 2 to 4 years.
These components will be used to create several different software systems to fulfil specific
market demands. The base functionality of these systems is provided by reusable components,
which means that a dependency relationship exists between these entities. For the timely deliv-
ery of systems it is crucial to deliver the essential components first, before the customers
demand systems that incorporate these components. As a result, a higher priority must be given
to the components that are needed for products that are demanded first. However, the determi-
nation of an effective implementation schedule is severely hampered by the complexity of the
dependency relations and the uncertainty about future market demands. To ensure that these
inputs are considered accordingly, an approach is needed that can systematically compare
resource allocation schedules with respect to probabilistic market demand expectations.

To illustrate these problems, we consider a software company that produces and maintains
software systems to be used by insurance companies. It is assumed that the software company
delivers a dedicated software system for each insurance product. In addition, the software com-
pany aims to market the same software system to multiple insurance companies worldwide.
Insurance companies can tailor these systems according to their specific policies. Generally,
insurance companies have a large customer base, with a variety of insurance products and pol-
icies. For the software company, to a certain degree it is possible to deal with the complexity of
evolution by adopting application frameworks and object-oriented and component-oriented
techniques. The components provide the common functionality and can be reused multiple
times. From these components basis products are derived on a per customer, which means

Chapter 5: Software Project Management with Probabilistic Market Demands

99

products can be instantiated many times from a single set of components. Since there may be
many options for scheduling the implementation effort, ideally the project managers should be
able to compare all the relevant options and select the best configuration that fulfils the timing
and resource constraints. For the example case, this means that the expected optimal planning
of resources for a given time span should be determined to maximize profit in selling insurance
software systems.

A number of software development methods suggest prioritisation of requirements, e.g.
[Jacobson1999]. For this purpose, several publications and tools have proposed decision-mak-
ing processes that support prioritization and scheduling of component implementation trajecto-
ries. However, the proposed approaches assume a fixed and stable set of requirements and
therefore are not directly suitable for dealing with the probabilistic nature of the changes in
market demands. While configuring software processes with respect to available resources is
not new [Podorozhny1999], in contrast to existing methods also the demands for future sys-
tems and changes in requirements must be considered.

Most of the aforementioned approaches are based on ranking approaches such as the analytic
hierarchy process (AHP) method [Karlsson1997] [Salo1997] [Forman2001]. In the AHP
method, a number of entities are rated based on pairwise comparisons. Each pair of elements is
rated with respect to each other based on some criterion. This pairwise comparison process is
repeated for all criteria that are relevant for the ranking. In the next step the criteria themselves
are compared in a pairwise manner, and the resulting rating of the criteria is used together with
the ratings of the entities per criterion to establish an overall rating among the entities. The
AHP method has been applied to various kinds of problems such as resource allocation and
risk assessment. The main problem with approaches like AHP is that a prioritization of entities
is achieved by comparisons that are based on human intuition. In the case of changing market
demands, approaches like AHP are not usable since they can not take the probabilistic nature
of the changes in market demands into account. Rather than establishing a rating amongst the
components to be implemented, the project manager needs scheduling advice that identifies
the most important components based on the expected market situations. In this chapter, we
propose a model that captures the uncertainty of future market demands using a graph-based
structure that includes probabilities. Additionally, we propose a model that represents the pos-
sible resource allocation schedules. The combination of these two models enables the evalua-
tion of the possible allocation schedules with respect to the probabilistic market demand
expectations. As a result, we can determine the schedule that gives an optimal result with
respect to a particular goal such as cost or implementation time. The novelty of the approach
lies in the possibility to explicitly consider probabilistic changes in the market demand while
scheduling the implementation of complex software systems. The specification is done based
on probabilistic market demand scenarios, which can automatically be generated from demand
expectations. The model ensures that the decision making process based on this information
considers the probabilistic changes and their consequential risks accordingly.

5.3 Optimized Allocation of Resources

5.3.1 Introduction

Consider a software company that produces and maintains software systems to be used by
insurance companies. It is assumed that the software company delivers a dedicated software
system for each insurance product. In addition, the software company aims to market the same
software system to multiple insurance companies worldwide. Insurance companies can tailor
these systems according to their specific policies. Generally, insurance companies have a large
customer base, with a variety of insurance products and policies. Of course, the insurance
product characteristics are not static but they evolve in accordance with the needs of society.
For example, a growing trend in the insurance market is the demand for tailored and personal-

Imperfect Information in Software Design Processes

100

ized insurances. For the software company, to a certain degree it is possible to deal with the
complexity of this evolution by adopting application frameworks, object-oriented and compo-
nent-oriented techniques. Application frameworks are programs that capture the generic parts
of several software systems and encapsulate them in reusable components. Actual software
systems can be produced by composition of several of these components. The components are
identified by discovering the variabilities and commonalities in the problem domain.

The software company has to schedule the implementation of the application framework, and
this must be aligned with the demand for insurance products. To achieve the implementation,
the software company has a number of software engineers that together form the resource
pool. From this resource pool, software engineers can be assigned on a per week basis, which
means the minimal amount of resources that can be assigned is 40 person-hours. This mini-
mum amount is referred to as the block size. For example, with four employees the resource
pool every week equals four person-weeks. The block size is equal to one person-week, since a
person can only be assigned to one task at the time.

The difficulty of scheduling the implementation of application frameworks is the result of two
influences: the uncertainty about market demand expectations and the vast number of possible
decisions with respect to resource allocation. Project managers can assign the available
resources in many different ways, but it is very difficult to systematically compare the alloca-
tion schemes, since they must be evaluated against uncertain market demand expectations. To
address these problems, we propose an approach that consists of three steps:

1 Determine probabilistic estimations for market, cost and profit changes

2 Construct the possible market scenarios and resource schedules that need to be
considered

3 Evaluate all possible schedules with respect to the scenarios and select the most
profitable schedule

In the first step of this approach the relevant properties of the market and the application
framework are defined. Based on these definitions, in the second step, a systematic representa-
tion is made of the possible demand scenarios and resource allocation schedules. In the third
step the combination of these representations is evaluated to determine the schedule that maxi-
mizes the expected profit. In this section, we first define a graph-based representation for prob-
abilistic demand scenarios, followed by a model for resource allocation schedules. Finally, we
combine these two models and define an optimization approach that determines a profit-opti-
mized production plan.

5.3.2 Modeling Uncertain Market Demands using Scenarios

The approach proposed in the previous paragraph identifies the need for a model that captures
the possible demand configurations that can come from the market. Since the implementation
of the application framework is scheduled in a finite amount of steps or points in time, we have
to consider the market demand for our products at these points. We define the time horizon to
be the amount of decision or time points that need to be considered for the resource allocation
schedule. The time points are numbered 0, 1, ..., Time Horizon-1. In our definition of the mar-
ket, the demand for products can change from one time point to the next, which means that
every product can be demanded by a certain amount of customers at each time point. The soft-
ware company at any point can decide to implement one or more products for these customers,
at which points they add the value of these contracts to their portfolio. When the software com-
pany decides not to implement products, the potential customer will be served by other soft-
ware companies and the chance for a contract is lost. Let the products be numbered 0, 1, ...,
#Products-1. A demand is defined to be a row of numbers with length #Products, where each
number represents the demanded amount of the respective product. To describe the market
demand, we define the demands at a particular point in time as a demand state. A demand state

Chapter 5: Software Project Management with Probabilistic Market Demands

101

is a pair, consisting of a time point and a demand. Additionally, we define a scenario to be a
mapping from time points to demands. For each scenario Sc, Sc(i)[p] denotes the demand at
time i for product p.

We represent scenarios in a systematic manner using a Scenario
Graph. In a scenario graph, each node represents a market
demand state and there exist links from states with time i to states
with time i+1. The depth of the graph corresponds to the amount
of time points in the time horizon. In Figure 5.1 a scenario graph
is depicted, which contains a single market demand scenario. In
this graph no events are considered that lead to different demand
states, which means this is a deterministic description of future
market demands. To include probabilistic changes in market
demands, a state at time i can be succeeded by multiple states at
time i+1 and each arrow in the scenario graph has a probability,
represented by a number larger than 0 and smaller or equal to 1.
Furthermore, the sum of the probabilities of all outgoing arrows
from a single node must sum up to 1.

In a scenario graph, each path from the root node to a leaf node
represents a single scenario. It is now possible to represent proba-

bilistic predictions of future market demands using a scenario graph. For example, let
DemandC and DemandD be two different demands. In addition, consider that the probability
going to a demand state (t+1, DemandC) from (t, DemandD) is given by β(t), and going to
(t+1, DemandC) from (t, DemandD) by α(t). The scenarios that can occur over a time horizon
of three decision points, assuming the starting demand state is (0, DemandC) are depicted in
the scenario graph in Figure 5.2.

There are eight possible scenarios. As a reference these eight scenarios and their probability of
occurrence is listed in Table 5.1.

0

Demand0

1

Demand1

2

Demand2

n

Demandn

Figure 5.1 Scenario Graph

1

DemandC

0

DemandC

1

DemandD

2

DemandC

2

DemandD

3

DemandC

3

DemandD

β(0)

α(1)

1-α(1)

1-β(0)

β(1)

1-β(1)

β(2)

1-β(2)
α(2)

1-α(2)

Figure 5.2 Scenario Graph

Imperfect Information in Software Design Processes

102

In the first four columns of this table, the demands at this time point are described. Note that
the scenario graph is very similar to a probabilistic automaton [Stoelinga2002].

5.3.3 Modeling Allocation Strategies using Sequential Allocation

The second part of our approach consists of a model that captures the possible human resource
allocations that can be chosen during the implementation time of the components and products.
Let the components of the framework be numbered 0, 1,..., #Components-1, and let the products
be numbered 0, 1,..., #Products-1. For each component and product, a certain amount of
resources is required before it is completed. The resources are assigned from the pool of avail-
able resources, represented by a number, to components and products that need to be imple-
mented, by means of a decision. A decision consists of two rows of numbers, one with length
#Components and one with length #Products. The numbers in the first row represent the amount of
resources that are allocated to the corresponding component, and the numbers in the second
row correspond to the amount of resources allocated to the corresponding product. In addition,
we define a production plan to be a mapping from time points up to TimeHorizon-1 to deci-
sions. For each production plan ProdPlan, ProdPlan(i).Components[c] denotes the resources
allocated to component c at time i and ProdPlan(i).Products[c] denotes the resources allocated
to product c at time i. The resources are assigned from the resource pool, which is represented
by a number. The minimum amount of resources that can be allocated per decision is the block
size. We define a Decision Graph as a means to represent production plans. In a decision
graph, each node represents a workstate, which we define to be a time point and the remaining
workload. A workload consists a row of numbers with length #Components and a row of num-
bers with length #Products. Each of these numbers represents the amount of resources that
should be allocated before the component or product is finished. Each arrow represents a deci-
sion that is taken from the particular workstate. The depth of the graph corresponds to the
amount of time points in the time horizon. The workload of the new state is the result of
deducting the assigned resources from the required resources in the current workload.

For example, consider the implementation of product C and product D. We need two compo-
nents to assemble these products, components A and B respectively. Component A requires
two weeks to complete and component B one week. Product C and D are refinements that are
made on a per customer basis; Product C can only be implemented if component A is avail-
able, and Product D only when component B is available. For Product C as well as product D
one person-week is needed for the implementation. We see that #Components = 2, #Products = 2.
Additionally, consider the case that we have one employee and therefore can allocate one per-
son-week per decision. We attain the decision graph that is depicted in Figure 5.3.

Table 5.1 Demand Scenarios

Sc(0) Sc(1) Sc(2) Sc(3) Probability

DemandC DemandD DemandD DemandD β(0)*(1-α(1))*(1-α(2))

DemandC DemandD DemandD DemandC β(0)*(1-α(1))*α(2)

DemandC DemandD DemandC DemandD β(0)*α(1)*β(2)

DemandC DemandD DemandC DemandC β(0)*α(1)*(1-β(2))

DemandC DemandC DemandD DemandD (1-β(0))*β(1)*(1-α(2))

DemandC DemandC DemandD DemandC (1-β(0))*β(1)*α(2)

DemandC DemandC DemandC DemandD (1-β(0))*(1-β(1))*β(2)

DemandC DemandC DemandC DemandC (1-β(0))*(1-β(1))*(1-β(2))

Chapter 5: Software Project Management with Probabilistic Market Demands

103

Here, the notation [p, q][r, s] in a node denotes p resources needed for A, q for B, r for C and s
for D. The notation [j, k][l, m] an arrow denotes the decision j resources allocated to A, k to B,
l to C and m to D. In this decision graph each path from the root to a leaf node in this graph
represents a production plan. In each node the workload is indicated. After a component has
been completed, the corresponding number in the workload becomes zero. Products are pro-
vided to customers, which means that in subsequent states new instances can be created for
new customers. Whenever a product is completed by a decision, in the next stage a new
instance of this product can be implemented. If for the implementation of a product instance k
resources are required and for the current instance another l resources are required, the alloca-
tion of m resources results in (m+k-l) div k product instances. After this decisions, i for the
completion of another instance of the same product k-(m+k-l) mod k resources. The production
plans that are represented by this decision graph are described in Table 5.2.

In the columns of this table the possible resource assignments for each point in time are
described. For our example this is the case for both Product A and Product B. In the table we
have only listed the feasible production plans for our example case.

1

[0, 2][1, 1]

0

[1, 2][1, 1]

[1, 0][0, 0]

2

[0, 1][1, 1]

3

[0, 0][1, 1]

1

[1, 1][1, 1]

2

[1, 0][1, 1]

2

[0, 2][1, 1]

3

[0, 1][1, 1]

3

[0, 2][1, 1]

3

[1, 0][1, 1]

[0, 1][0, 0]

[0, 0][1, 0]

[0, 0][1, 0]

[0, 1][0, 0]

[0, 0][0, 1]

[0, 1][0, 0] [1, 0][0, 0]

[0, 1][0, 0]

[0, 0][1, 0]

[0, 1][0, 0] [1, 0][0, 0]

Figure 5.3 Decision Graph

Table 5.2 Production Plans

ProdPlan(0) ProdPlan(1) ProdPlan(2)

[1, 0][0, 0] [0, 0][1, 0] [0, 0][1, 0]

[1, 0][0, 0] [0, 0][1, 0] [0, 1][0, 0]

[1, 0][0, 0] [0, 1][0, 0] [0, 0][1, 0]

[1, 0][0, 0] [0, 1][0, 0] [0, 1][0, 0]

[0, 1][0, 0] [1, 0][0, 0] [0, 0][1, 0]

[0, 1][0, 0] [1, 0][0, 0] [0, 1][0, 0]

[0, 1][0, 0] [0, 1][0, 0] [1, 0][0, 0]

[0, 1][0, 0] [0, 1][0, 0] [0, 0][0, 1]

Imperfect Information in Software Design Processes

104

5.3.4 Integration of the Decision Graph and Scenario Graph for Resource
Allocation Optimization

To come to scheduling advice that considers the probabilistic nature of the changes in the mar-
ket demand, the information in the decision graph and the scenario graph needs to be consid-
ered simultaneously. To describe the combined information in a systematic manner, we
propose to merge the two graphs into a combined graph. In a combined graph, each node has a
workstate as well as a demand. For the computation of the scheduling advice, the expected
profit of each production plan needs to be determined. Each arrow represents a decision that
can be taken from the particular state.

For each decision the resulting state is defined by a set of possible new states, each of which
will be reached with a specific probability. The nodes of the combined graph are given by the
following relation:

Given time i, for every decision graph node (i , w), and every scenario graph node (i, d), a
node exists in the combined graph (i, w, d).

So every node at time i in the scenario graph is combined with every node at time i in the deci-
sion graph. The arrows between the nodes in the combined graph are given by the following
relation:

There is an arrow with probability p from (i, w1, d1) to (i+1, w2, d2) in the combined graph if
and only if there is an arrow with probability p from (i, d1) to (i+1, d2) in the scenario graph
and there is an arrow from (i, w1) to (i+1, w2) in the decision graph

The combined graph for our example is depicted in Figure 5.4.

0

[1, 2][1, 1]

DemandC

1

[0, 2][1, 1]

DemandC

1

[0, 2][1, 1]

DemandD

1

[1, 1][1, 1]

DemandC

1

[1, 1][1, 1]

DemandD

2

[0, 2][1, 1]

DemandC

2

[0, 2][1, 1]

DemandD

2

[0, 1][1, 1]

DemandC

2

[0, 1][1, 1]

DemandD

2

[1, 0][1, 1]

DemandC

2

[1, 0][1, 1]

DemandD

3

[0, 2][1, 1]

DemandC

3

[0, 2][1, 1]

DemandD

3

[0, 1][1, 1]

DemandC

3

[0, 1][1, 1]

DemandD

3

[0, 0][1, 1]

DemandC

3

[0, 0][1, 1]

DemandD

3

[1, 0][1, 1]

DemandC

3

[1, 0][1, 1]

DemandD

[1, 0][0, 0] [0, 1][0, 0]

1- β(0) β(0) 1-β(0)

[1, 0][0, 0]

[1, 0][0, 0]

[1, 0][0, 0]
[1, 0][0, 0]

[0, 0][1, 0]

[0, 0][1, 0] [0, 0][1, 0]

[0, 0][1, 0]

[0, 0][0, 1]

[0, 0][0, 1]

[0, 1][0, 0]

[0, 1][0, 0]

[0, 1][0, 0]

[0, 1][0, 0]

[0, 1][0, 0]

[0, 1][0, 0]

[0, 1][0, 0]

[0, 1][0, 0]

[0, 0][1, 0]

[0, 0][1, 0]

1 2 3 4 5 6 7 8

9 10 11 12 13 14

15 16 17 18

19

β(0)

1- β(1)
1- β(1) 1- β(1)

1- β(2)
1- β(2)

1- β(2) 1- β(2)

β(1)
β(1) β(1)

β(2)
β(2) β(2) β(2)

1- β(1)

1- β(2)
1- β(2)

β(1)

β(2)
β(2)

1- α(1)

1- α(1)

1- α(1) 1- α(1)

1- α(2)

1- α(2)

1- α(2)

1- α(2)

1- α(2)
1- α(2)

α(1) α(1)

α(1)

α(1)

α(2)

α(2)

α(2)

α(2)

α(2)
α(2)

Figure 5.4 Combined Decision- and Scenariograph

Chapter 5: Software Project Management with Probabilistic Market Demands

105

The combined graph also is very similar to a probabilistic automaton, like the scenario graph.
In this combined graph, each allocation decision is followed by a random change in the market
demand, in accordance to a probability distribution. For instance, when in the start state deci-
sion [1, 0][0, 0] is taken, in the next point in time DemandC occurs with a probability of 1-β(0)
and DemandD occurs with a probability β(0). It can be seen that for this example each state in
the decision graph is replaced with two nodes, one for each demand state, since at every point
in time one of two possible demands can occur. The process of a decision followed by the
occurrence of a demand state describes the dynamic probabilistic market conditions during the
implementation of the components.

Our approach returns scheduling advice, which means that the resulting schedule must be able
to indicate the best scheduling decision (the advice) for each state in the combined graph (the
condition). This is achieved by ordering the decisions in each state based on the expected
profit. In accordance with market description, the direct profit for a decision D in state S corre-
sponds to the turnover from the products that are completed by the decision minus the cost of
the resources that are used. The turnover is the sum of the turnover per product. The direct
profit of choosing decision D from state S is given by a reward function R:

R(S, D) = 0 , if S is at the end point on the time horizon

R(S, D) = (*Amount(P, D)) - (ResourceAmount(D) * CostPerResource)

Here Amount(P, D) is the number of products P that is produced as a result of decision D, and
the summation runs over all products. Note that Amount(P) is not greater than the demand of P
in S, since D is a feasible decision. As we have identified earlier, to compute the expected
profit of a decision we have to consider the maximum expected profit of each possible subse-
quent state, multiplied by the probability of reaching it. For this purpose we define:

Val(S, D) =

where

MaxVal(S) = Val(S, D)

When we examine the structure of the combined graph in Figure 5.4, we can see that for the
evaluation the value of particular states are needed multiple times. For example, the value of
state 11 is needed for the evaluation of states 15, 16, 17 and 18. Due to this structure we will to
apply dynamic programming [Bellman1961] [Larson1968] in the evaluation of the states and
their decisions. This essentially means that once a particular state has been evaluated with
respect to all of its decisions, the result will be stored and reused every time it is needed for the
evaluation of other states. We can now evaluate the function Val for our example using the
functions defined above. The results of this computation are given in Table 5.3.

Price P()
P

∑

R S dD,() p S′ S D,()MaxVal S′()
S′
∑+

Max

D

Imperfect Information in Software Design Processes

106

In this table, the leftmost column contains the number of the state in the combined graph,
which corresponds to the numbers in Figure 5.4. The four main columns, indicated by the thick
line, represent the four possible decisions that can be taken, [1, 0][0, 0], [0, 1][0, 0], [0, 0][1,
0] and [0, 0][0, 1], corresponding to the decision in the decision graph. The table gives the val-
ues for Val(S, D). As indicated before, depending on the state it is not possible to take all four
decisions. The decisions that are not feasible for a particular state are indicated with “-“ in the
table. Note that the MaxVal for each state is equal to the column with the highest Val value for
that particular state. Also note that MaxVal for states 1, 2, ..., 8 is equal to 0, and these states
are therefore omitted in this table.

When we examine, for example, the computation of Val for choosing action [0, 0][1, 0] from
state 15, this value is computed as follows. According to the definition of R we sum up the
turnover of all demanded products we can produce and subtract the cost for the used resources.
We produce one instance of product C with our decision, which results in a turnover since C is
demanded in this state. From this turnover we deduct the cost for producing C. This results in a
value Price(C)-CostPerResource. To compute the value for Val, we now include the expected
maximum profits for all states that can be reached from this state by choosing this decision.
We reach state 9 with a probability 1-β(2) and we reach state 10 with a probability of β(2). The
value of Val for choosing [0, 0][1, 0] from state 15 thus becomes Price(C)-CostPerRe-
source+(1-β(1))MaxVal(9)+(β(1))MaxVal(10).

Table 5.3 State Evaluations of the Combined Graph

S I: [1, 0][0, 0] II: [0, 1][0, 0] III: [0, 0][1, 0] IV: [0, 0][0, 1]

9 - -CostPerResource Price(C)

-CostPerResource

-

10 - -CostPerResource -CostPerResource -

11 - -CostPerResource Price(C)

-CostPerResource

-

12 - -CostPerResource -CostPerResource -

13 -CostPerResource - - -CostPerResource

14 -CostPerResource - - Price(D)

-CostPerResource

15 - -CostPerResource

+ (1-β(1))*MaxVal(11)

+ (β(1))*MaxVal(12)

Price(C)

-CostPerResource

+ (1-β(1))*MaxVal(9)

+ (β(1))*MaxVal(10)

-

16 - -CostPerResource

+ (α(1))*MaxVal(11)

+ (1-α(1))*MaxVal(12)

Price(C)

-CostPerResource

+ (α(1))*MaxVal(9)

+ (1-α(1))*MaxVal(10)

-

17 -CostPerResource

+ (1-β(1))*MaxVal(11)

+ (β(1))*MaxVal(12)

-CostPerResource

+ (1-β(1))*MaxVal(13)

+ (β(1))*MaxVal(14)

- -

18 -CostPerResource

+ (α(1))*MaxVal(11)

+ (1-α(1))*MaxVal(12)

-CostPerResource

+ (α(1))*MaxVal(13)

+ (1-α(1))*MaxVal(14)

- -

19 -CostPerResource

+ (1-β(0))*MaxVal(15)

+ (β(0))*MaxVal(16)

-CostPerResource

+ (1-β(0))*MaxVal(17)

+ (β(0))*MaxVal(18)

- -

Chapter 5: Software Project Management with Probabilistic Market Demands

107

5.4 Case Study: The Insurance Products Framework

5.4.1 The Insurance Products Framework

In section 5.3.1 we have introduced a software company that produces and maintains software
systems to be used by insurance companies. To deal with the variety and complexity of pro-
ducing insurance products for a variety of companies, this software company has captured
generic functionality in an application framework. For the design of this application frame-
work the software engineers have performed an analysis of the insurance domain. During this
domain analysis, the typical elements of insurance products are identified and related by means
of the feature diagram depicted in Figure 5.5.

In this figure, a feature diagram of insurance products is depicted. A feature diagram represents
both the commonality and variability of a product [Kang1990]. In Figure 5.5, six different
parts of insurance products are shown: insured object, coverage, payment, conditions, pre-
mium and payee. Each of these parts can be represented by several entities. For example, an
insured object can be a person, corporation, realty or a movable property. The symbols that are
depicted in the legend are used as restrictions on the variability. The feature diagram distin-
guishes four types of relations: mandatory features, optional features, alternative features and
or features. The difference between alternative and or features is that the alternative relation is
an exclusive or (only one of the involved features can be included), where any subset of fea-
tures can be selected within an or relation. Using these specifications, a large variety of insur-
ance products can be defined, ranging from bicycle insurances to tailored insurances for large
corporations. In this chapter, to avoid confusion, products that are sold by software and insur-
ance companies are referred to as insurance software systems and products, respectively. In
order to deal with the developing market, the software company has decided to design and
implement an application framework, from which it can easily derive product variations. The
application framework is based on the feature diagram in Figure 5.5, and is divided into three
layers. In Figure 5.6 the components and their dependencies of the application framework are
depicted.

Insurance Product

Insured Object

Corporation

Person
Realty

Movable

Property

Insured Object

Corporation

Person
Realty

Movable

Property

Conditions

Acceptance Exception

Conditions

Acceptance Exception

Premium

Direct Periodical

Premium

Direct Periodical

Payment

Service

Amount

Own Risk

Payment

Service

Amount

Own RiskOwn Risk

Coverage

Illness

Life

Damage

Unemployment

Loss

Coverage

Illness

Life

Damage

Unemployment

Loss

Payee

Person Corporation

Payee

Person Corporation

Alternative feature

Or-feature

Mandatory feature

Optional feature Legend

Alternative feature

Or-feature

Mandatory feature

Optional feature Legend

Figure 5.5 Feature Diagram of Insurance Products

Imperfect Information in Software Design Processes

108

At the top level the most basic components are displayed, which correspond to the basic fea-
tures in the feature diagram. In the middle layer, the components are depicted that will be used
to assemble final products. These components are refinements of the base components.
Finally, at the bottom the products are depicted, that the software company aims to derive from
the framework components. In the figure, also the needed resources for the implementation of
the components is indicated. For products, the implementation time for a single instance as
well as the selling price is indicated.

5.4.2 Modeling the Market Demands and Production Plans

The implementation and transfer to the application framework takes time, and as a result the
software company might miss opportunities for selling their insurance systems. Therefore the
company decides to determine the optimal implementation schedule with respect to the expec-
tations of the market demands. For this purpose the software company has analyzed the market
expectations for the next six weeks, and based on this analysis three mutually exclusive market
expectations have been identified: an optimistic outlook, a moderate outlook and a pessimistic
outlook.

Optimistic Outlook

In the optimistic outlook there will be demand for a variety of products by many insurance
companies. This increase in demand is based on the possibility of new legislative decisions
with respect to illness insurances. In the optimistic outlook, ten insurance companies will
demand:

• Illness Insurance System

• Illness Insurance with Own Risk System

Coverage

Resources: 40 ph

Insured Object

Resources: 40 ph

Illness

Coverage

Resources: 80 ph

Insured Person

Resources: 120 ph

Illness

Insurance

System

Resources: 80 ph

Price: € 6000,-

Unemployment

Coverage

Resources: 80 ph

Unemployment

Insurance

System

Resources: 80 ph

Price: € 8000,-

Payment

resources: 40 ph

Own Risk

Resources: 40 ph

Illness Insurance

with Own Risk

System

Resources: 80 ph

Price: € 10000,-

Legend

A B

A is assembled from B

Unemployment

Insurance with

Own Risk System

Resources: 80 ph

Price: € 8000,-

Figure 5.6 Insurance Application Framework Components

Chapter 5: Software Project Management with Probabilistic Market Demands

109

Moderate Outlook

The moderate outlook predicts that insurance companies want to upgrade their service to their
customers by offering own risk options in their insurance products. In the moderate outlook,
four insurance companies will demand:

• Illness Insurance with Own Risk System

• Unemployment Insurance with Own Risk System

Pessimistic Outlook

In the pessimistic outlook the pending legislative decisions with respect to illness insurances
causes the insurance companies to postpone their demand for illness insurance systems. As a
result only two insurance companies will order unemployment insurance products:

• Unemployment Insurance System

• Unemployment Insurance with Own Risk System

The probability of going from an optimistic to a pessimistic outlook or vice versa is compara-
bly small. The probabilistic changes in the market demand are modeled using the scenario-
graph in Figure 5.7 and are based on the defined outlooks.

Pos

Opt Mod Pes

Opt Mod Pes

Opt Mod Pes

Opt Mod Pes

Opt Mod Pes

Opt Mod Pes

0.4 0.4

0.2

0.4 0.3

0.3

0.5 0.2

0.3

0.6 0.2

0.2

0.7 0.2

0.1

0.7 0.2

0.1

0.4

0.30.3

0.5

0.30.2

0.6

0.20.2

0.7

0.10.2

0.7

0.10.2

0.4
0.3

0.3

0.4
0.3

0.3

0.4
0.3

0.3

0.4
0.3

0.3

0.4
0.3

0.3

Figure 5.7 Scenario-graph for Insurance
Market Estimations

Imperfect Information in Software Design Processes

110

In this scenario-graph, for each week three new states can occur, the optimistic outlook, the
moderate outlook and the pessimistic outlook. For the period in which the application frame-
work is supposed to be implemented, this scenario-graph describes all the possible scenarios
that can occur. Each path from the start state to a leaf state represents one possible scenario.

The next step in our approach is to model the possible production plans that can be chosen for
the implementation of the application framework. The software company at this time employs
five software engineers, who can be scheduled on a per week basis for 1 personweek (which
equals 40 person-hours). The hourly wage of the software engineers is € 12. The software com-
pany has the choice to allocate software engineers to the project where only the allocated
resources need to be paid from the perspective of the project. The resource pool is therefore
200 and the block size is equal to 40. Based on this information and the framework compo-
nents and their dependencies, the production plans can be derived using the definitions for the
decision-graph. Due to the size of the decision-graph, a graphical depiction is omitted here.

5.4.3 Determining the Scheduling Advice

The final step is to determine scheduling advice with respect to the optimal production plan for
the implementation of the application framework. This is achieved by merging the scenario-
graph and the decision-graph into the combined graph according the definitions in section
5.3.4. Finally, for each state in this combined graph the best decision is computed and stored in
the combined graph together with the expected profit of this decision. The relevant part of the
combined graph now is a scheduling advice, which means that it contains the best scheduling
for each situation that can occur according to the modeled inputs. The scheduling advice can
be queried for the best decision by indicating the current state, being the amount of work done
and the current market situation. The complete scheduling advice for our example is too large
to include, so we examine a small portion of the scheduling advice. In the portion we examine,
the first two weeks have passed, and in these two weeks, five components have been com-
pletely implemented: Payment, Insured Object, Coverage, Insured Person and Illness Cover-
age. In the third week, the project manager is faced with the question how to allocate resources
in the third week.

Chapter 5: Software Project Management with Probabilistic Market Demands

111

In Figure 5.8, we see the workload that remains at the beginning of week three in the grey box.
The best resource allocation decision for this week depends on the market demand that has
occurred during this week. On the left side of the picture, the best decision is given in case of
the optimistic demand outlook. In the picture, three of the possible decision are depicted
including the best decision, indicated with thick lines. Note that for example the option of allo-
cating 200 person-hours to produce Illness Insurance Systems for 4 companies is ignored,
since this option in the short run would have a higher profit but over the period of six weeks
has a greater risk. On the right, the best decision is given for either the moderate or pessimistic
demand outlook. Note also, that it is possible to have a best decision where no resources are
allocated at all. This is the case, when the costs of the current decision will not be compensated
by expected profit within the time horizon.

5.4.4 Relevance and Validity of Scheduling Advice

The scheduling advice, that results from the application of our approach, can be used by
project managers to coordinate resource allocation. In the complete production plan the best
decisions are known for each state, which means that even when the project manager does not
select the best decision, it is possible to give allocation advice. Only when the initial inputs
change, such as changes in the scenario-graph or the time horizon of interest, the scheduling
advice must be recalculated. While the scheduling advice offers allocation advice for all the
modeled demand scenarios, it should be noted that this advice is based on the expectation val-
ues of the probabilities. The consequence of this is that the validity of the decision support
depends on the accuracy of the market demand scenarios. Only when the probabilities and
demand states give an accurate description of the future changes in market demands, the deci-
sion will give an accurate result. Therefore, while an accurate representation of the future mar-

Week 3

Opt
Mod

Pes

Own Risk: 120

Unemployment

Coverage: 80

Illness Insurance

System: 80

Own Risk: 120

Unemployment

Coverage: 0

Workload

Payment: 0

Insured Object: 0

Coverage: 0

Own Risk: 40

Insured Person: 0

Unemployment Coverage: 80

Illness Coverage: 0

Illness Insurance

System: 80

Illness Insurance with

OR System: 80

Unemployment Insurance

System: 80

Unemployment Insurance

with OR System: 80

Illness Insurance

System: 160

Own Risk: 40

Unemployment

Coverage: 0

Illness Insurance

System: 0

Own Risk: 120

Unemployment

Coverage: 80

Own Risk: 120

Unemployment

Coverage: 40

Own Risk: 80

Unemployment

Coverage: 80

Figure 5.8 Portion of the Scheduling Advice

Imperfect Information in Software Design Processes

112

ket demands leads to useful scheduling advice, these restrictions need to be considered during
the allocation of resources.

5.5 Related Work

5.5.1 Software process configuration management

To cope with the constantly changing customer requirements, software products and software
processes must be re-configured frequently. Software configuration management aims to man-
age the evolution of a product. Our approach can be seen as complementary to software con-
figuration management techniques. Software configuration management is a broad domain and
covers the entire life cycle. Further, software configuration management processes can be
defined for specific domains as well. An approach for resource management for distributed
multiagent systems is presented in [Podorozhny1999]. By taking into account a wide range of
resource and entity types, the resource management can be described and optimized accu-
rately. This approach, however, is not equipped to deal with uncertainty in the changes of the
market. Our approach aims to schedule the available resources while considering probabilistic
changes in market demands and project context. In addition to software configuration manage-
ment, several researchers have focused on the configuration of processes. The basic issues of
process configuration are located in the choice of the development process and the alignment
of the process configuration. In [Osterweil1997] [Osterweil1998] it is argued that software
development processes can be managed and configured in much the same way as software
products.The common assumption of this approach is that processes should be considered as
products and be configured with respect to product quality goals. All these approaches focus
on specific aspects of software configuration management, to which our approach is comple-
mentary. Our approach focuses on the support of uncertain changes in market demands with
respect to the allocation of implementation resources, which is generally missing in the con-
ventional software process configuration approaches.

5.5.2 Requirements Engineering

Scheduling requirements with respect to the order in which they should be implemented is not
new. There have been various research activities on this topic. However, research activities
generally focus on fixed requirements; prioritization is realized after the requirements are
determined. The work described in [Regnell1992] focuses on prioritization of software
requirements with respect to the quality of decision-making. The basic assumption here is that
new requirements should either be accepted or rejected. By analyzing and simulating the
acceptance/rejectance rate, the decision quality can be improved and only relevant require-
ments are selected for further consideration. The difference with our approach lies in the fact
that the approach in [Regnell1992] acts as a filter and results in a set of requirements that
should be implemented. The remaining relevant requirements are also considered equally
important. However, these requirements still need to be prioritized with respect to implementa-
tion and resources, since there still might be dependencies among them. Also, the approach
focuses on the best requirements set for the next release, while our approach is more aimed at
finding optimal schedules for implementation with respect to changes along the time span of a
project. In [Karlsson1997] a methodology is proposed, which prioritizes requirements based
on an analysis of the costs and the profits. For each requirement, the relative cost and value are
determined using the analytic hierarchy process. This model then allows comparison of the
requirements based on these properties, so that one can be ranked over the other with respect to
these two aspects. By considering the requirements of engineers, customers, users and soft-
ware engineers, an accurate requirements model can be made. The proposed methodology in
[Karlsson1997] focuses on prioritisation with respect to value and cost, and with that it aims to

Chapter 5: Software Project Management with Probabilistic Market Demands

113

satisfy market demands in general. The methodology does not explicitly address the delivery
constraints that are imposed during the software development process. Also the model does not
support analysis of requirements that share dependencies. In our approach this is specifically
addressed by the framework dependencies.

5.5.3 Optimization Models

Many different optimization models and approaches have been defined to address specific
problems in the area of design, most of them having a mathematical origin. Generally speaking
an optimization model consists of four parts: a subject to be optimized, the options to be con-
sidered, a comparison criterion and an ideal situation description (or goal). The possible
options are evaluated with respect to their goal using the criterion. For instance, there are learn-
ing-based optimization models such as neural networks [Haykin1998] or genetic algorithms.
The problem addressed in this chapter falls into the area of aggregate production planning, a
particular type of problem that falls into the category of supply chain management, based on
models from operations research. For the interested reader a more elaborate introduction into
aggregate production planning and scheduling can be found in [Voß2003]. In this book an
overview is given of the components of supply chain management and a number of models are
introduced and discussed for production planning and scheduling. The book also proposes a
number of extensions for optimization beyond project boundaries and support for tardiness.

5.6 Discussion
We have presented a method that can help project managers in determining the estimated opti-
mum process development schedule that delivers the best expected profit. Given probabilistic
product demand scenarios, resources, application framework structure and components depen-
dencies, the demand scenarios and production plans can be derived and evaluated. This method
consists of the following steps from the project manager point-of-view:

1 Define the market demand states and the event probabilities

2 Define the components to be implemented and their dependencies

3 Define the available resources and the cost per resource

4 Define the time horizon and the reward specification

After these four steps have been completed, our approach derives the scenario graph and deci-
sion graph, and combines them. Based on the provided inputs the scheduling advice is com-
puted. In the following, we evaluate our approach with respect to the following concerns:

When are the results from the resource allocation approach accurate?

When the implementation of application frameworks and product lines should be planned,
there is always the possibility of missing out on potential sales during the implementation
period. In the case that the changes in demand are known for this period, planning the imple-
mentation activities is a straightforward activity. However, as has been identified in this chap-
ter, the demands coming from the market are not known precisely, which means the project
manager is faced with imperfect information. The presented approach describes the imperfec-
tion by means of events that have a probability description with respect to their occurrence. In
general, short-term market estimations can be made with reasonable accuracy. For prolonged
periods of time simple probabilistic estimations will become less reliable. In addition, it can be

Imperfect Information in Software Design Processes

114

difficult to identify the appropriate probability definitions, which is a reason to expand the
capabilities of the model with respect to working with other imperfection models.

The proposed approach can be used at various levels of detail, depending on elements of inter-
est to the project manager. In particular, the scheduling advice offers advice for all the states
that can be derived from the provided information. This means that it is only necessary to
recalculate the optimization when one of these inputs is no longer valid. In addition the pro-
duction plan can be used to gain extra insights in, for instance, worst-case scenarios by means
of analyzing ‘what-if’ situations. This helps the managers to gain better insight in the planning
and risks of software development processes under imperfect information.

Will the proposed resource allocation approach scale to industrial sized problems?

To calculate the optimal result, the defined approach computes and evaluates all possible states
that can be derived from the inputs. This can cause very large state spaces and lengthy compu-
tations. This is known as the curse of dimensionality [Bellman1961]. To address this problem,
within the field of optimization theory various research activities have been carried out. Exam-
ples are state space minimization techniques by assessing the relevancy of states and by mak-
ing trade-offs between accuracy of the result and computation size, or optimization for parallel
computing [Chung1992] [Larson1965] [Larson1968]. The presented approach provides a valu-
able input to the resource planning process in which the scarce resources have to be planned in
a time span. However, for industry-sized projects the approach introduces considerable com-
putational effort.

To resolve this, tool support is needed that can be used to perform the computations in the spe-
cific context of the company. We have developed a prototype of tooling that is usable within
an industrial context, which is described in chapter 6. In addition to the described approach, the
tool provides flexibility in considering new data, for example, which may be available due to
better market estimates. The tool recalculates the optimal schedule from the time that new data
are considered relevant. In addition, the tooling can provide scheduling advice by providing a
querying mechanism for the scheduling advice.

5.7 Conclusions
In this chapter the activity of scheduling the implementation of application frameworks and
product lines is identified as an area that suffers from the existence of imperfect information.
Typically, the implementation of the reusable parts of this type of systems requires consider-
able resources, which means that it is not possible to implement products that generate a profit
simultaneously. Ideally, the implementation schedule should allow for the commitment to the
production of products at the moment a considerable demand comes from the market. How-
ever, since it is not exactly known what the demand will be in the future, project managers
should schedule the implementation trajectory based on imperfect information. In addition, the
scheduling activity is complicated further by the complex dependency structures that can exist
between reusable framework parts and the products that can be derived from them.

We presented a model capable of working with imperfect estimations of changes in demands
coming from the market and determining scheduling advice for the implementation of product
lines and application frameworks. The imperfect nature of the future market demands is
addressed by identifying a number of events or outlooks that can occur during the period that
implementation will be performed. Each of these events is attributed with a probability
description, that indicates the probability that this particular event will occur during the imple-
mentation trajectory. In order to restrict the number of allocation possibilities over the period
in which the application framework is implemented, the presented approach explicitly consid-
ers the dependency structure of the reusable assets and the derived products.

Chapter 5: Software Project Management with Probabilistic Market Demands

115

The application of the approach results in a production plan, which contains advice for all the
possible production states and market demands that can be derived from the provided inputs.
Project managers can query the production plan to determine the best allocation decision for
the current state of the implementation trajectory. Additionally, it is possibly to use the produc-
tion plan to explore situations that are not likely to occur, but can hold significant risk. Using
the result of our approach in this manner gives project managers useful insights into worst-case
situations and “what-if” scenarios. With this approach it is possible to explicitly consider prob-
abilistic changes in the market demand while scheduling the implementation of complex soft-
ware systems. The underlying optimization model ensures that the decision making process
based on this information considers the probabilistic changes and their consequential risks
accordingly.

Future research activities concern further support for the application in different settings with
respect to product lines and application frameworks. In particular, the scheduling of reverse-
engineering and adjustments to existing product line architectures is a logical extension of the
approach presented in this chapter. In addition, automated support is required for convenient
usage of the approach when scheduling software projects. This is in particular true for the com-
putation of the advice, easy navigation of the scheduling advice, and using the production plan
as a means to simulate alternate market and production situations. In chapter 6 we present tool-
ing support for the approach proposed in this chapter. These tools assist the software engineers
and project managers in the application of the approach.

Imperfect Information in Software Design Processes

116

Chapter 6: Tool Support for Imperfect Information

117

C H A P T E R

Chapter 0TOOL SUPPORT FOR IMPERFECT INFORMATION

6.1 Introduction
In this thesis we have identified that imperfection is an integral element of software design pro-
cesses, which in most cases can not be avoided or resolved. As a result imperfection informa-
tion must be managed inside the software design process, so that the software designers are
aware of this imperfection and can use it to their advantage. To facilitate the inclusion of
imperfect information in software development activities, in the previous chapters we have
defined three optimization approaches, which support software engineers in a variety of design
decisions. We have also identified that the manual application of these models can become too
cumbersome to manage in an industrial context, which makes automated tool support indis-
pensible. As a proof-of-concept we have developed a set of tools that implement our
approaches. The toolset consists of three parts, the Artifact Tracer, the Design Decision Tracer
and the Resource Allocation Optimizer, that offer support for capturing the relevant (imper-
fect) information during various activities of the design process, and, in addition, can apply the
optimization approaches for decision support.

In this chapter, we introduce the tools that have been developed. The remainder of this chapter
is as follows: In section 6.2 we describe the workflow and architectures of the individual tools.
In section 6.3 we identify a number of attention points for the tooling and implementation of
the models and we conclude the chapter in section 6.4.

“Tensions are oddly distributed here tonight, Jessica thought. There's
too much going on of which I'm not aware. I'll have to develop new
information sources.”

- From Frank Herbert’s Dune [Herbert2005]

Imperfect Information in Software Design Processes

118

6.2 The SPOT Toolset
To support software engineers in the application and use of our imperfection models, we have
implemented the SPOT (Software Product & Process Optimization Techniques) Toolset on the
Javatm platform. In this toolset, three different tools are provided which correspond to the
approaches proposed in this thesis:

• Artifact Tracer Tool: implements the approach based on the Artifact Trace Model that
was presented in chapter 3. The tool assists the software engineer during the refinement
steps and performs the optimization steps for the trade-off between stakeholder interests
and implementation effort. The tool offers support for fuzzy functional requirement
specifications.

• Decision Tracer Tool: traces the design decisions and contemplated alternatives during
the software development process according to the design tree approach as described in
chapter 4. Decision support is offered based on the design strategies with support for
imperfect quality requirements and estimations.

• Resource Allocation Optimizer Tool: calculates scheduling advice for the allocation of
resources based on the approach of chapter 5. The tool offers scenario simulation and
allocation support based on probabilistic market demand specifications.

In this chapter we introduce the tools of this toolset. We introduce the design and global archi-
tecture of each tool. In addition we give a short overview of the user interface functions. It is
important to note that this chapter will not contain an exhaustive description of the toolset, but
gives a general notion on how the proposed approaches are supported by tool prototypes. A
complete background on the tool design and user manuals can be found at [SPOT2007], from
where the tools can also be downloaded.

6.2.1 The Artifact Tracer Tool

The Artifact Tracer Tool implements the artifact trace approach with support for imperfect
requirement specifications as described in chapter 3. For this model the initial (imperfect)
requirement specification is provided by the stakeholder. In subsequent steps the software
engineer refines these requirements to a system architecture. The general design of the Artifact
Tracer Tool is shown in Figure 6.1. In this abstract description the models and processes are
represented as rectangles and ellipses, respectively. Each of the roles indicated at the top of the
diagram provide or receives information from the tool.

Chapter 6: Tool Support for Imperfect Information

119

The Artifact Tracer Tool requires the stakeholder(s) to provide the requirements specification
for the software system that should be designed. These requirements are stored in the require-
ments repository, together with the annotations for stakeholder interests, such as relevance or
urgency (for more information see chapter 3). The process Artifact Transformation takes the
requirements from the requirements repository as input and together with the software engi-
neer refines the requirements to components. The resulting data of this refinement process is
the Artifact Trace Model. In the final step the System Optimizer process determines the optimal
system design based on the Artifact Trace Model, for which the tool requires the optimization
criterion and restrictions from the stakeholder and the software engineer. The resulting data
Optimized System Data is then presented to the project manager.

Architecture and User Interface of the Artifact Tracer Tool

The architectural design of the Artifact Tracer Tool is divided into two areas, the components
for the Artifact Trace Model and the optimizer. An abstract view of this architecture is given in
Figure 6.2.

Requirements

repository

Requirements

Specification

Artifact Trace

Model

Optimized

System

Data

Software

Engineer

Stake

Holder

Project

Manager

Artifact

Transformation

System

Optimizer

Software

Engineer

Stake

Holder

Figure 6.1 Artifact Tracer Tool Conceptual Design

Imperfect Information in Software Design Processes

120

In this figure the righthand side depicts the components for the Artifact Trace Model. It can be
seen that both crisp and fuzzy requirements are considered to be design artifacts, just as other
intermediate artifacts. Additionally, crisp requirements are used to represent alternative inter-
pretations of fuzzy requirements. The Optimizer component offers the possibility to define a
number of restrictions on the allowed values of stakeholder attributes. The Optimize() function
determines the optimal set of requirements to be implemented, which is achieved by evaluating
each set of requirements using the instance of the Artifact Trace. The tool is designed accord-
ing to the Model-View-Controller pattern, which means the Artifact Trace is instantiated by
the controller based on the inputs from the user interface.

The Artifact Tracer Tool contains two algorithms to optimize system designs based on stake-
holder interests. The first algorithm is a straightforward implementation, which evaluates
every subset of the fuzzy requirement specification according the approach defined in chapter
3. In the same chapter we have defined a heuristic optimization approach, which is also sup-
ported by the tool. In accordance with this definition the heuristic algorithm evaluates a limited
amount of subsets of the fuzzy requirement specification, in order to reduce the computational
complexity. For the examples defined in this thesis the computational complexity is well
within the capabilities of the Artifact Tracer Tool for both the full and the heuristic optimiza-
tion. The necessity for the heuristic optimization should become clear from application of the
tool within an industrial setting.

The user interface is the means of interaction for the software engineer with the tracing and
optimization functionality with the Artifact Tracer Tool. The main interface of the Artifact
Tracer Tool is depicted in Figure 6.3.

Design Artifact

+AddChild()

+GetChildren()

Requirement

+SetInterestValue()

+GetInterestValue()

IntermediateArtifact

+SetImpTime()

+GetImpTime()

CrispRequirement FuzzyRequirement

1..*

Interpretations

Optimizer

+AddRestriction()

+RemoveRestriction()

+Optimize()

OptimizationResult

+SetRequirements()

+SetComponents()

+SetSystemCost()

+SetCritValue()

+SetInterestsValues()

Restriction

+Evaluate()

+SetRestrictionAttribs()

0..*

returns

ArtifactTracerController

+CreateCrispRequirement()

+CreateFuzzyRequirement()

+CreateInterest()

+CreateRestriction()

+AddArtifactToArtifact()

+Optimize()

Figure 6.2 Abstract Architecture of the Artifact Tracer Tool

Chapter 6: Tool Support for Imperfect Information

121

The main window of the Artifact Tracer Tool consists of four parts: the Requirement Modeler
(1), the Stakeholder Interest Modeler (2), the current Artifact Trace (3) and the action-buttons
(4). In the Requirement Modeler the stakeholder and software engineer can define both fuzzy
and crisp requirements by means of textual descriptions. The new requirements are depicted in
the Artifact Trace. In the Stakeholder Interest Modeler the applicable interests of the stake-
holders are defined by textual descriptions as indicated in Figure 6.3. The values for each
stakeholder interest can be set by means of the dialog window for the definition of interpreta-
tions. In the Artifact Trace sub-window the current state of the artifact trace is depicted. At the
top of the trace the requirements are depicted, red for crisp requirements and blue for fuzzy
requirements. The interpretations of fuzzy requirements and refinements that have been
defined by use of the action buttons are reflected in this artifact trace window. The Action But-
tons are used to perform design activities such as the refinement of artifacts or the definition of
interpretations for fuzzy requirements.

The Artifact Tracer Tool supports the optimization of software design according to the
approach that has been defined in chapter 3. Based on the requirements, stakeholders interests
and artifact refinements, the software engineer can search for the optimal system based on self-
defined criteria and restrictions. The resulting optimal system is presented with a result dialog
such as the one depicted in Figure 6.4.

1

2

3

4

Figure 6.3 The Artifact Tracer Tool Interface

Imperfect Information in Software Design Processes

122

In this result dialog window, the result of the optimization is depicted, which describes the sys-
tem properties that result from the optimization process. It displays the system that best suits
the optimization criterion and restrictions by the requirements that are fulfilled (1), the compo-
nents that are needed for these requirements (2), and the value of the stakeholder interests (3)
that are computed according to the definitions in chapter 3. In addition, it displays the value of
the optimization criterion, the number of systems that have been evaluated and the time that
was needed for the evaluation of these systems (4). Finally, it indicates whether this optimal
result satisfies all the constraints that have been specified on the stakeholder interests. The
optimization result can be saved in a plain text representation.

6.2.2 Decision Tracer Tool

The Decision Tracer Tool implements the Design Tree approach with support for imperfection
in quality requirements and estimations as described in chapter 4. In this tool the stakeholder
provides the (imperfect) quality requirements, and the software engineer identifies the design
issues that need to be resolved. The software engineer then provides and evaluates design alter-
natives and, based on the derived design tree, the tool provides the optimal design state from
which to continue. The architecture of the Design Decision Tracer is shown in Figure 6.5.

1

2

3

4

Figure 6.4 Optimization Result Dialog

Chapter 6: Tool Support for Imperfect Information

123

The Design Decision Tracer requires that the stakeholder provides the initial quality require-
ments specification for the system that must be designed. The software engineer is supposed
provide the design issues that must be resolved. This information is stored in the Requirements
Repository and Issues Repository respectively.The second step is the identification of design
alternatives for each individual design issue. The Alternatives Definition process takes the
issues from the Issues Repository as input and, with the help of the software engineer, identi-
fies the alternatives for the current design issue, and estimates their respective quality
attributes. The resulting data of this process is the Design Tree Model data. The Decision Opti-
mizer process takes the current design tree as input and determines the best design state from
which to continue the design process. The Optimal Design State data result is presented to the
software engineer, who now can continue determine alternative solutions for the next design
issue and repeat the optimization process.

Architecture and User Interface of the Decision Tracer Tool

The Decision Tracer Tool requires the non-functional requirement specification from the
stakeholders as well as the design issues that need to be resolved. Based on these inputs the
design decision are traced and optimized. As a result, the architecture of Decision Tracer Tool
reflects these two elements, as can be seen in Figure 6.6.

Requirements

repository

Requirements

Specification

Design Tree

Model

Software

Engineer

Stake

Holder

Decision

Optimizer

Software

Engineer

Design

Issues

Issues

repository

Alternatives

Definition

Optimal Design

State

Figure 6.5 Conceptual Design of the Decision Tracer Tool

Imperfect Information in Software Design Processes

124

In the top half of this figure, the components for modeling quality requirements and estima-
tions is depicted. It can be seen that requirements and estimations are seen as attributes of a
quality attribute component. The function SatisfactionDegree() returns the degree of satisfac-
tion for its associated requirement and estimation according to the operators defined in chapter
4. The TreeNode and Sorter components implement the functionality for the Design Tree
approach. The design tree is built by linking a number of TreeNode instantiations, each of
which contains estimation for the defined quality attributes. Every time a new node is added,
the Sorter component implements the sorting functionality that is described in section 4.2.4. It
updates the ranking of the nodes and removes nodes when necessary. This activity is per-
formed at each definition of new tree nodes, which means that the computational complexity
of the optimization is neglecible.

The user interface of the Decision Tracer is comprised of three user tabs, the Process Parame-
ters Tab, the Designer Tab and the Design Tree Tab. In the Process Parameters Tab the quality
requirements for the software design process are defined, as well as the initial design issues
that are to be resolved. In the Designer Tab in the predefined order the design issues are
resolved in a step-wise manner. The Design Tree Tab can be used to inspect the design tree
that results from the identified alternatives and the decisions that are taken.

TreeNode

+AddEstimation()

+AddChildNode()

+GetCurrentProblem()

+GetTreeDepth()

Sorter

+AddNode()

+RemoveNode()

+GetBestNode()

OptimalSorter SmartSorter

DecisionTracerController

+CreateCrispRequirement()

+CreateFuzzyRequirement()

+CreateAttribute()

+CreateCrispEstimatiom()

+CreateFuzzyEstimation()

+CreateProbEstimation()

+ExpandNode()

+GetBestNode()

QualityAttribute

+SatisfactionDegree()

Estimation0..1Requirement

+EvaluateEstimation()

0..1

CrispRequirement FuzzyRequirement CrispEstimation FuzzyEstimation

ProbabilisticEstimation

0..*

Figure 6.6 Abstract Architecture of the Decision Tracer Tool

Chapter 6: Tool Support for Imperfect Information

125

The first tab in the DecisionTracer is the Process Parameters tab. In the Quality Attributes part
(1) the relevant quality attributes are defined by means of a textual description. On these
attributes both crisp and fuzzy requirements on the allowed average and boundary values can
be defined. In the Design Issues part (2) the software engineer defines the design issues that
need to be resolved using a textual description, and the order in which these issues are to be
addressed. In the case that new design issues arrive as a result of resolving a design decision,
the new issues can be added in the Designer Tab after which they are included in all subse-
quent design states.

21

Figure 6.7 The Process Parameters Tab

Imperfect Information in Software Design Processes

126

The Designer Tab is the tab at which the design issues are resolved in sequence. At (1) the cur-
rent design issue is displayed, and below it is the list of design issues that must be resolved
after the current one is completed. In the picture the current design issue is “Which Server
Architecture do we use?“, after which two more design issues need to be resolved. Candidate
solutions for the current Design Issue are entered at (2), again using a standard textual descrip-
tion. After this definition the estimated quality of each quality attribute is entered using crisp,
fuzzy or probabilistic models at (3). In the picture a fuzzy estimation is defined for the maxi-
mum performance of the MultiSensor Architecture. Using the controls at (4) the design state
can be examined and the tool can offer decision support on the design state from which to con-
tinue.

1 2

3

4

Figure 6.8 The Designer Tab

Chapter 6: Tool Support for Imperfect Information

127

In the Design Tree Tab we can find the design tree representation of the design issues and con-
templated alternatives. While it is not necessary to understand the Design Tree approach to use
the Decision Tracer, it is possible to inspect the design tree of the current situation at any time
in the Design Tree Tab. In the design tree one node is colored grey (9). This node represents
the design state in which the design process currently resides. In addition, the tool indicates the
optimal nodes with respect to two design strategies defined in chapter 4. In the figure node 8
indicates the best node to continue from according to the Optimal Design Strategy. Node 11
indicates the best node according to the Smart Design Strategy.

6.2.3 Resource Allocation Optimizer

The third tool in the SPOT Toolset is the Resource Allocation Optimizer, which implements
the resource allocation optimization model that is described in chapter 5. The components and
the dependencies must be provided by the software engineer, the personnel manager is sup-
posed to provide the resources and constraints. The market analyst is required to provide the
market demand states, events and probabilities. Based on these inputs, the tool provides sched-
uling advice and a simulation environment with which the project manager can schedule the
implementation trajectory. The architecture of this tool is shown in Figure 6.10.

Figure 6.9 The Design Tree Tab

Imperfect Information in Software Design Processes

128

The tool requires artifacts (framework parts and software systems), software system demand
scenarios and resources to be modelled by the software engineer, marketing analyst and per-
sonnel manager, respectively. The personnel manager must also define the goals of the optimi-
zation problem, such as minimization of cost, maximization of profit, etc. The process
Decision Space Generator retrieves the necessary information from the artifact repository and
the process Scenario Space Generator retrieves the necessary information from the Market
Model Repository. Together they generate the data Scheduling State Space.

The next step is the determination of scheduling advice. The process Schedule Optimizer takes
Scheduling State Space as input and generates the data Ranked Scheduling Data as output,
which can be presented to the project manager in various formats. In addition, the project man-
ager can run simulations by using the Schedule Simulator, which results in the data Scenario
Simulation Data.

Architecture and User Interface of the Resource Allocation Optimizer

The Resource Allocation Optimizer requires the software engineer, marketing analysis and
personnel manager to provide the application framework, market demand expectations and
resource model. Based on this information the tool generates the combined graph and com-
putes the scheduling advice. The architectural design of the Resource Allocation Optimizer is
divided into four parts to reflect this structure.

Artifact

repository

Product

Demand

Scenario

repository

Resource

model

repository

Framework

&

Product

Model

Market

Model

Resource

Model

Scheduling

State Space

Ranked

Scheduling

Advice

Software

Engineer

Marketing

Analyst

Personel

Manager

Project

Manager

State Space

Generator

State Space

Generator

Schedule

Optimizer

Schedule

Optimizer

State Space

Inspector

Project

Manager

Figure 6.10 Conceptual Design of the Resource Allocation Optimizer

Chapter 6: Tool Support for Imperfect Information

129

In Figure 6.11, an abstract representation of the Resource Allocation Optimizer architecture is
depicted in a standard UML-type description. In this architecture FrameWorkComp is used to
represent the components of the application framework. Dependencies between these compo-
nents can be described by the Dependency class. The DemandOutlook class is used to describe
future market demand state and their probability of occurrence. In the case that two outlooks
have a restriction on each other, such as mutual exclusion, the restrictions can be modelled
using the Restriction class. The optimization properties of the Resource Allocation Optimizer
that are modeled are the time horizon and the available resources. The time horizon consists of
a number of DecisionPoints, each of which can have a individual RewardFunction. The avail-
able resources are modeled by the Resources class. The combined graph is modeled by the
structure of classes at the right bottom of the picture. Since the computation of the reward
depends on the type of the state (see chapter 5 for details), a distinction in the architecture is
made between leaf nodes and non-leaf nodes.

The optimization algorithm of the Resource Allocation Optimizer offers two approaches to
come to the scheduling advice. The first approach is the complete generation of both the sce-
nario graph and decision graph as defined in chapter 5, and computing and solving the com-
bined graph for the scheduling advice. The advantage of this approach is that the computed
graphs can be inspected and used for the simulation of what-if scenarios. The second approach
directly computes and solves the combined graph by recursive computation of the states of sce-
nario and decision graph. While the time complexity of this approach is equal to the first
approach, the space complexity is vastly reduced since it is not necessary to compute the com-
plete scenario and decision graph before the scheduling advice can be determined. As has been
indicated in chapter 5, the generation and evaluation is performed with complexity reduction
techniques such as backtracking and dynamic programming.

The Resource Allocation Tool consists of three modeling tools, the Parameter Modeler, the
Event Modeler and the Optimization Modeler. The application framework and the dependen-
cies between the components are modeled in the Parameter Modeler. Additionally the avail-

FrameWorkComp

+SatisfiesRestrictions()

+GetFixedProperties()

+GetModProperties()

Dependency

+Satisfied()

0..*

2

MutualExclusion

+Satisfied()

RequiresComplete

+Satisfied()

Resources

+GetResourceAmount()

+GetCostPerUnit()

+GetUnitSize()

DemandOutlook

+SatisfiesRestrictions()

+GetFixedProperties()

+GetModProperties()

+GetProbability()

Restriction

+Satisfied()

0..*

2

MutualExclusion

+Satisfied()

RequiresOccurred

+Satisfied()

TimeHorizon

+GetDecisionAmount()

+CreateDecisionPoints()

DecisionPoint

+GetRewardFunction()

RewardFunction

+CalculateReward()

1..*

1

AbstractNode

+GetMaxExpectedReward()

+GetBestDecision()

LeafNode Node

+GetChildren()

+AddChildNode()
1..*

Figure 6.11 Abstract Architecture of the Resource Allocation Optimizer

Imperfect Information in Software Design Processes

130

able resources are modeled in the Parameter Modeler. In the Event Modeler the demand states
and the probabilities of the transition events are modeled. The optimization parameters such as
the time horizon and the reward specification for choosing a decision from a state is defined in
the Optimization Modeler. The result of the optimization can be explored using the Simulator
Tool.

In Figure 6.12, the Parameter Modeler is depicted. The sub-window on the left side (1) dis-
plays the modeling tools for the definition of the application framework components. The tool
distinguishes between framework components and products, based on which relevant proper-
ties can be defined such as cost. Also several types of relationships between components can
be defined, such as a completion-dependency or a mutual-exclusion dependency. In the Param-
eter Modeler (2) the framework parts as well as the resources are modeled. In the figure the
dialog-box for modeling the resources (3) is depicted. In this dialog box the resource amount
function is specified with a regular expression language to facilitate the change of resources
over time. The stepsize function indicates the minimal amount of resources that need to be
assigned. The cost per unit is described using a numeric expression. While this part of the tool
in the prototype is a stand-alone implementation, in an integrated environment the dependency
information could for instance be acquired from UML models.

1
2

3

Figure 6.12 The Parameter Modeler

Chapter 6: Tool Support for Imperfect Information

131

In Figure 6.13, the Event Modeler is depicted. Like the Parameter Modeler, the sub-window on
the left side displays the modeling tools for the definition of the events and dependencies
between them (1). In (2) the demand states and their relations are depicted. The event inspector
(3) enables the modeling of the demand state that result from the event. The probabilities can
be set as well as the demands for individual products in the dialog box that is also displayed in
the figure. In this dialog box the demand state is named and given a probability function using
a regular expression. In addition a number of properties can be defined such as the demand for
a particular set of products. The name of these products must correspond to the products in the
parameter modeler. The demanded amount again is a regular expression.

1
2

3

Figure 6.13 The Event Modeler

1

2

Figure 6.14 Optimization Modeler

Imperfect Information in Software Design Processes

132

The Optimization Modeler depicted in Figure 6.14 is used to model the time horizon and the
reward specification. The decision points are indicated in the time frame (1) and describe the
amount of times at which allocation decisions must be taken. The Optimization Modeler sup-
ports a reward specification that can differ per decision point. At (2) the reward specification is
described using regular expressions. The reward specification in this picture refers to a pre-
defined function, but in the future full regular expression support is planned.

The Simulator Tool depicted in Figure 6.15 enables the project manager to explore “what if“
scenarios that might occur during the implementation of the application framework. The Simu-
lator Tool consists of two sub-windows. The left sub-window is the simulation inspector and
displays information on the current state of the simulation, such as profit result, amount of
work done, etc. At (1) the current work state is depicted, with for each component the amount
of resources that have been assigned to it. At (3) the decisions that can be taken from the cur-
rent state can be explored. For each decision the expected reward is indicated. The resource
allocation details are displayed in (2). By selecting or randomizing the new demand state and
selecting a decision, the software engineer can step through the implementation trajectory. The
right sub-window (4) displays the scenariograph that describes the possible demand states and
the current demand state. In this picture a deterministic scenariograph is depicted.

6.3 Implementation Issues and Points of Interest
The SPOT Toolset that implements the models in this thesis provides a valuable addition for
the application of our approach. Although the toolset at the moment is aimed at demonstration
purposes and being a proof-of-concept, it is already usable for supporting small to medium-

1

2

3

4

Figure 6.15 The Optimization Simulator

Chapter 6: Tool Support for Imperfect Information

133

large software design processes. However, to fully utilize the added value of our approach, in
this section we will shortly discuss some considerations with respect to tooling support.

Complexity and Performance

The models in our approach all describe (in part) an optimization problem. And as with all
non-trivial optimization problems, the complexity and tooling performance can severely ham-
per the usefulness of the approach. The complexity of the optimization problems in our
approach is typically exponential, which means that a straightforward implementation will
arguably not scale up to industrial sized software design problems. To handle the complexity
issues in our approach we have defined heuristics that reduce the exponential complexity at the
expense of finding an approximation rather than the optimal solution.

In the SPOT toolset the models have been implemented including the heuristics proposed in
this thesis. While the time performance was still very adequate with respect to the example
cases that were analyzed, the usage of the heuristics resulted in a considerable increase in per-
formance. With the use of recursive evaluation, the space complexity (i.e. memory usage)
remained fairly minimal, which enables the usage of smart computation techniques that can
reduce time complexity at the expense of space complexity, such as dynamic programming.
How the tools perform in industrial-sized software projects remains to be seen however. At
this moment the actual increase in complexity needs to be assessed as well as typical usage
scenarios. For the future, a complete empirical assessment is planned based on the pilot study
that is described in chapter 7.

Usability and Understandability

Another attention point, in addition to computational complexity, is the usability and under-
standability of our approach. While it is clear that our approach can assist software engineers
during the design process, this will be most effective when tool support presents our approach
in a very effective, understandable and usable manner. The design assistance that is offered
should minimize the overhead for the software engineer and maximize the benefits.

In our pilot study we found that the participants appreciated the models defined in this thesis,
because they made explicit the activities in design processes that were implicit before. As a
side-effect this caused the participants to consider these steps of the design process in minute
detail. The extra overhead caused by the mathematical computations of our models was largely
handled by our toolset, and after a small number of iterations the usage of imperfection models
become quite natural. The main effort of tool support therefore should lie in a ergonomically
well-designed user interface, which enables to software engineer to use our models comfort-
ably. Nonetheless, to assess the usability and understandability the toolset offers in the applica-
tion of our approach, a more thorough analysis is required. For the future, a complete empirical
assessment is planned based on the pilot study that is described in chapter 7.

6.4 Conclusions
The models that have been defined in this thesis enable software engineers to consider and
include imperfect information in the software design process. To relieve the added workload of
the application of our approach during software development and to ensure proper application
of the imperfection reasoning models, we have presented a toolset that supports the software
engineer. Our toolset consists of three tools: the Artifact Tracer, the Decision Tracer and the
Resource Allocation Optimizer. The Artifact Tracer tool implements the Artifact Trace Model
approach with support for fuzzy requirements, design optimization for multiple stakeholder
interests and heuristic optimization capabilities. The Decision Tracer implements the Design
Tree approach with support for imperfect quality requirements, imperfect quality estimations
and multiple design strategies. Finally, the ResourceAllocator implements the resource alloca-

Imperfect Information in Software Design Processes

134

tion approach with support for multiple market demand states and probabilistic event descrip-
tions. These tools have been implemented as a proof-of-concept and as a testbed to validate the
applicability of our approach. In chapter 7, the applicability as well as the usability of the tool-
ing as well as the approaches are evaluated by means of a pilot study. Based on this pilot study,
an outline is given for a complete empirical validation of the models and tools proposed in this
thesis.

Chapter 7: Evaluation and Conclusions

135

C H A P T E R

Chapter 0EVALUATION AND CONCLUSIONS

7.1 Introduction
In this chapter, we evaluate our approach by means of a pilot study and summarize the results.
In section 7.2, we examine the validity and applicability of our approach by means of a pilot
study. The results of this pilot study are described in section 7.3. In section 7.4, we reflect on
the main research issue: imperfect information in software design processes. We derived three
problems: considering imperfection in functional requirement specifications, imperfection in
quality evaluations and design alternative selection, and imperfection in scheduling resources
for component implementation based on market demand expectations. We recapitulate the
approaches we have defined for the identified problems in sections 7.5, 7.6 and 7.7 respec-
tively. In section 7.8, we reflect on the benefits and drawbacks of our approach. Finally, in sec-
tion 7.9 we define an outline for the future work on imperfect information in software design
processes.

Halleck had spoken in Paul's ear: “Odd sort of fellow. Has a precise
way of speaking--clipped off, no fuzzy edges--razor-apt.” And the
Duke, behind them, had said: “Scientist type.”

- From Frank Herbert’s Dune [Herbert2005]

Imperfect Information in Software Design Processes

136

7.2 Validity and Applicability of our Approach

7.2.1 Introduction

With the approaches that have been proposed in this thesis, the imperfection in requirement
specifications and estimations can be isolated and described. Using the reasoning mechanisms
we have defined, this imperfect information can be included and considered during software
development. Obviously, the usefulness of the proposed models and reasoning mechanisms
largely depends on how well they reflect and support the development process. A key issue of
our research is therefore to assess the validity and applicability of our approaches in a real
world setting. To achieve a fair evaluation of the real world performance of our models, an
empirical experiment is required, where software design is performed under controlled condi-
tions. By comparing the resulting software architectures of a traditional and imperfection sup-
ported development processes, the added value of the latter can be evaluated. However, the
setup and execution of an empirical experiment requires considerable planning and for this
type of approach it is difficult to evaluate experimentation results. The main cause for this dif-
ficulty lies in the absence of measures that can be used to evaluate the results of the experi-
ment. In typical empirical validations in the field of software engineering, well-known
quantifiable properties such as lines of code or McCabe complexity can be used to compare for
instance source code of software modules. Other metrics that are used are based on coupling,
cohesion, etcetera. The evaluation of our approach is not as straightforward, since here the
effectiveness of the underlying development process must be assessed. For this type of evalua-
tion metrics are not readily available.

To explore the requirements and attention points for empirical assessment of our approach, we
have conducted a pilot study, which provided insights and feedback for the definition of a full
empirical experiment. This pilot study was conducted as part the master course Advanced
Design of Software Architectures-I and consisted of groups of students that performed an
architecture design based on imperfect requirement specifications. The architectural design
was performed in two iterations; in the first iteration the architectural design was performed
without means to model imperfection in the requirements. In the second iteration, the imper-
fection in both functional and quality requirements and quality estimations was modeled and
considered during a redesign of the software architecture. During the second iteration the
design activities were supported by the tools of the toolset that was introduced in chapter 6. In
the following we describe the goal and setup of the pilot study. The results and conclusions as
well as a starting point for empirical evaluation are given in section 7.3.

7.2.2 Goal and Setup of the Pilot Study

The models that are described in this thesis aim at preventing faulty or premature decisions in
software design processes by explicitly modeling imperfection in requirements and estima-
tions. To determine whether these approaches and the tools that implement them are success-
ful, a pilot study has been conducted within the master course ADSA-I. Empirical validation of
models for real world application is typically very difficult within an artificial setting such as
master courses, which is identified in [Carver2003]. The causes for this lie, for example, in the
fact that student behavior typically does not correspond to the behavior of software engineer
during software development and the overall difference in the working environments. The
results of empirical validation in software courses, therefore, not necessarily reflects validity in
real world application. Based on these limitations and the partial knowledge on the empirical
validation of this particular type of model, we have opted for a pilot study that gives a qualita-
tive evaluation of our approach as well as insights on the elements that are needed to perform a
complete empirical validation.

Chapter 7: Evaluation and Conclusions

137

The pilot study was conducted with the following goal: “We want to analyze the impact of
explicitly modeling imperfection on the optimality of the software design“. To achieve this
goal, the students were asked to design the architecture of a software system based on one of
two available example cases. In both example cases the descriptions and requirement specifi-
cations were deliberately left vague and unclear to simulate imperfect information received
from the stakeholders. To compare the results from a crisp requirement interpretation and
design with the results of applying our imperfection approach, the pilot study was divided into
two phases:

1 Working out an example case with the design tree and artifact trace model but without the
support for capturing the imperfection present in the requirement specifications.

2 Working out an example case with the design tree and artifact trace model and with the
models for capturing the existing imperfection supported by the SPOT Toolset

In the first phase, the students worked out one of two example cases according to a simple soft-
ware design process based on the Artifact Trace Model and the Design Tree approach. The
example cases contained considerable imperfection in several functional and non-functional
requirements. However, in the first phase the students were given no means to address this,
which forced the students to make explicit assumptions on the meaning and interpretations of
the imperfect information in order to come to an architecture design. In the second phase, the
students were introduced to the extensions of the Artifact Trace Model and the Design Tree
Model that enables software engineers to capture and evaluate imperfect information. Based
on these extensions, the students revised their architecture design by applying the developed
toolset to the example case. As a result, in the second phase the students had to identify imper-
fection in the requirement specifications explicitly, and model it accordingly.

Due to the limited time available inside the course, the design steps of the pilot study were
minimized in order to come to an architecture design at a fairly high level of abstraction. To
guide the students during the design phase, a simplified version of the analysis synthesis pro-
cess Synbad (see chapter 2) was introduced. In this simplified design process a single refine-
ment iteration is performed from requirement to a high-level component structure. In addition
the students were expected to identify three problems in the second refinement step that should
be analyzed using the design tree approach. For each of these problems at least three design
alternatives should be considered and evaluated according to the design tree approach. A sche-
matical depiction of the simplified design process is given in Figure 7.1.

Requirements

Problems

Solutions

Components

Figure 7.1 Simplified Software Design Process
for the ADSA-I Experiment

Imperfect Information in Software Design Processes

138

It can be seen that the simplified software design process only covers a small part of the activ-
ities that software engineers perform during actual software design. However, in accordance
with the goal of the pilot study, the simplification does not remove the typical problems that
software engineers encounter when they are faced with imperfect information. Rather it iso-
lates and underlines these problems and as such the study is a useful means for a qualitative
evaluation of our approach.

The evaluation of the results of the pilot study is based on analysis of the models that result
from the design process. In addition, the students were asked for their views on the applicabil-
ity and usability of the approach as well as the toolset that supports it. To ensure a fair evalua-
tion the students were explicitly asked to assess the approach and toolset with respect to the
following points:

1 Ease of use

2 Extra insights gained by the approach

3Most relevant parts and strong points

4 Least relevant parts and weak points

By collecting the results of the student evaluation and by analyzing the architecture design that
result from the application of our imperfection models we draw initial conclusions with respect
to the validation of our approach. In addition, we propose an outline and considerations for set-
ting up and conducting an empirical experiment with which this type of research can be vali-
dated.

7.2.3 Examples for the Pilot Study

For the pilot study, 24 students were divided into six groups consisting of four people. Each
group was assigned one of two possible example cases. These example cases are modified ver-
sions of the examples that have been used in the previous chapters. In particular the require-
ment specifications have been altered to ensure differentiation in the example case, as well as
different imperfection. Below the descriptions are given of the two example case that were
used.

Example Description I: Storm Surge Barrier

Consider a storm surge barrier designed to protect a moderately populated urban area. The bar-
rier has to be closed only in case of absolute necessity; otherwise the cargo transport can be
hampered unnecessarily. However, leaving the barrier open during storm situations can result
in immediate danger for the population. Since the decision to close the barrier is a complicated
task, it has been decided to incorporate a computer-controlled system for this purpose. The
control system should make a decision every 5 seconds, based on numerous inputs such as
weather forecasts, changes in the water level, tides, etc. whether or not it should go to an alert
state. This example focuses on the data collection and storage facility (DCS). The description
that is provided by the stakeholders for this particular part is as follows:

“The DCS shall support the collection and retrieval of decision data by the decision support
system. This should be achieved by communication with the data providing entities, such as
water sensors, meteorological institutes, etcetera. The acquired data that is gathered and

Chapter 7: Evaluation and Conclusions

139

stored describes information about its direct and indirect geographical vicinity. The data
storage must be usable in a convenient manner and must be usable for the display system.
To communicate the stored data, the DCS must be accessible from various locations in a
uniform manner.

Note that both the functional and non-functional requirement specifications are variants of the
example case in chapter 4. We summarize the functional requirements for the DCS from this
specification as follows:

1 The DCS system shall collect information from various sources and locations

2 The DCS system shall store the information in a convenient manner

3 The DCS system shall support data formatting for the display system

4 The DCS system shall be accessible from various geographical locations with a
uniform interface

In addition the following non-functional requirements are provided by the stakeholders:

1 The DCS must be able to retrieve and format data on average within 500 milliseconds
after initiating the request.

2 The DCS must be able to retrieve and format data on average within a maximum of 650
milliseconds after initiating the request.

3 The DCS shall be able to store and retrieve the data of the last four weeks

4 The cost of this system must not exceed 200K euros.

Imperfection in Example I

The imperfection in the DCS example at the first stage is predominantly present in the func-
tional requirements specification, where terms like “various“ and “convenient” are used to
describe desired properties of the system. Note that in the non-functional requirement no
explicit imperfection is present. However since an abstract software architecture is designed
means that it is difficult to estimate the expected quality properties of the completed system,
which introduces imperfection in the quality estimations in a natural manner.

Example Description II: Traffic Management System

Consider a Traffic Management System (TMS), designed to monitor and regulate the traffic
flow on a national scale. To utilize the infrastructure fully and to plan the future of the traffic
systems, a new TMS is being developed. The system is supposed to provide the necessary
technical support for monitoring, controlling, managing, securing and optimizing the traffic
flow effectively. Since this scale and scope of the TMS is too large to consider completely, we
will focus on the section which handles task allocations based on scenarios and available traf-
fic information. The description that is provided by the stakeholders for this particular part is
the following:

Imperfect Information in Software Design Processes

140

“The TMS must support the convenient allocation of tasks by the system operators. This is
achieved by the definition of scenarios that can take place. The Task Allocation part should
gather and store information about traffic in its direct and indirect geographical vicinity.
The defined tasks and scenarios should be dynamically modifiable according to the newest
traffic developments. To communicate the tasks and actions, the TMS should be able to
access its connected roadside systems. In addition, the TMS should support systems
operators in identifying tasks and actions that will normalize traffic flow as fast as
possible.”

Note that both the functional and non-functional requirement specifications are variants of the
example case in chapter 3. We summarize the functional requirements for the TMS from this
specification as follows:

1 The TMS system should collect information from various sources and locations

2 The TMS system should store the task and scenario information in a convenient
manner

3 The TMS system should support data formatting for the display system

4 The TMS system should be accessible from various geographical locations with a
uniform interface

In addition the following non-functional requirements are provided by the stakeholders:

1 The TMS must be able to communicate the actions to the roadside system within on
average 500 milliseconds.

2 The TMS must be able to communicate the actions to the roadside system within a
maximum of 650 milliseconds.

3 The TMS should be able to maintain the connection to the roadside system for at least
10 seconds in case of failure.

4 The cost of this system must not exceed 200K euros.

Imperfection in Example II

The imperfection in the TMS example is similar to the imperfection of the DCS example.
Imperfection is predominantly present in the functional requirements specification, where
terms like “various“ and “convenient” are used to describe desired properties of the system.
Again in the non-functional requirement no explicit imperfection is present, but the fact that an
abstract software architecture is designed means that it is difficult to estimate the expected
quality properties of the completed system.

7.3 Results of the Pilot Study

7.3.1 Introduction

The pilot as described in the previous section was conducted in the course between the 11th of
December 2006 and the 19th of January 2007. In the first lecture the students were introduced
to the Artifact Trace Model and the Design Tree approach as means to trace intermediate

Chapter 7: Evaluation and Conclusions

141

design artifacts, design decisions and contemplated alternatives. Also the students were famil-
iarized with the example cases and the simplified design process. During the first stage of the
pilot study the students performed the architectural design of their respective example case,
and traced the activities. At this point the imperfection models were not known to the students,
which simulated the design of software without support for imperfect information. In a presen-
tation session the students presented and discussed the results of their design activity, as well
as the difficulties that were experienced during this process. In the second lecture the imperfec-
tion models for the Design Tree and the Artifact Trace Model were introduced to the students.
Based on the identified difficulties during the presentation session the problems of imperfect
information were introduced and addressed. Based on these extension the students revised
their initial design activities by explicitly identifying and modeling imperfection in the exam-
ple cases. To support these activities the redesign was executed as a lab assignment where
under supervision the students used the toolset to describe and revise the architectural design.

The results of this pilot study can be divided into two parts, which correspond to the two activ-
ities that were performed by the students. In section 7.3.2 we examine the results from the arti-
fact trace models and design tree models application without and with imperfect support
respectively. We evaluate these result with respect to the influence the imperfect requirements
had on the initial design, the added complexity of using our approach, the benefits of using our
approach and the applicability and usability of the toolset. In section 7.3.4 we use the results
and evaluations to define the starting point for empirical validation of our research.

7.3.2 Imperfect Information Models in the Pilot Study Setting

The first phase of the pilot study introduced the students to the two example cases, which were
intentionally left vague and ambiguous in their description. The students were therefore forced
to resolve the imperfection in the requirement specifications in the most applicable manner
according to their judgment. The resulting architectures from this design steps differed consid-
erably for the groups, since the chosen interpretations of the imperfection could not be
resolved with the stakeholders. Interestingly, a number of students did not explicitly identify
the imperfection in the requirement specifications, but immediately jumped to their own inter-
pretations without being aware of this step. After introducing the concept of imperfect infor-
mation to the students and the models in our approach, the students revised their initial designs
while explicitly modeling the imperfection in the functional and quality requirements.

Imperfect Requirement Specifications used in the Artifact Trace Model

First we examine the results of the modelled imperfection in the functional requirement speci-
fications. In particular we are interested to see how the starting point, which was identical for
all groups, results in different interpretations and designs. In Table 7.1 and Table 7.2 we sum-
marize the identified requirement interpretations for the Traffic Management System and the
Data Collection and Storage System respectively.

Imperfect Information in Software Design Processes

142

In this first table the interpretations for the functional requirements of the Traffic Management
System are given. Previously, we have identified that in the second requirement the term “con-
venient“ is a vague expression as well as the “various sources“ for information in the first
requirement. In the interpretations we see that the term convenient was interpreted as “conve-
nient for the software engineer“. Also we see that for all the requirements alternative interpre-
tations were proposed, even while the first impression would not directly indicate a need for it.

Table 7.1 Interpretations for the Traffic Management System

Requirement Description
1 The TMS should collect information from various sources and locations

1.1 The TMS should collect formatted information from other computers

1.2 The TMS should collect raw information from sensors and cameras

2 The TMS should store the task and scenario information in a convenient manner

2.1 The TMS should store the task and scenario information in a human-readable format

2.2 The TMS should store the task and scenario information in a standard convertible format

3 The TMS should support data formatting for the display system

3.1 The TMS should supply textual data to the display system

3.2 The TMS should control the display system using geographical data

4 The TMS should be accessible from various geographical locations with a uniform
interface

4.1 The TMS should have clearly defined interfaces

4.2 The TMS should be accessible through a plug-in architecture

Table 7.2 Interpretations for Data Collection and Storage System

Requirement Description
1 The DCS system should collect information from various sources and locations

1.1 The DCS system should go through different systems and fetch the data

1.2 The DCS system should receive information from various source systems

1.3 The DCS system should be able to both receive and fetch data

2 The DCS system should store the information in a convenient manner

2.1 The DCS system should store the information in an XML-based format

2.2 The DCS system should store the information in a binary format

2.3 The DCS system should store the information in a human-readable format

2.4 The DCS system should store the information in a centralized manner

2.5 The DCS system should store the information in a distributed manner

2.6 The DCS system should store the information in a hybrid manner

3 The DCS should be accessible from various geographical locations with a uniform
interface

3.1 The DCS system should be accessible from various geographical locations through a

stand-alone client-side application

3.2 The DCS system should be accessible from various geographical locations through a web-

based interface

Chapter 7: Evaluation and Conclusions

143

In Table 7.2 the alternative interpretations for the requirement specification of the Data Collec-
tion and Storage System are given. Since different groups performed the design of the DCS,
also other interpretations were given. In this case requirement 4 was not considered for inter-
pretations, but especially the term “convenient“ in the second requirement led to many alterna-
tive interpretations. We see that interpretations 2.1, 2.2 and 2.3 interpret “convenient“ in terms
of the storage format, where the interpretations 2.4, 2.5 and 2.6 focus on the storage structure
that will be used.

In addition to the definition of alternative interpretations, also a number of stakeholder inter-
ests were defined, based on which the system was evaluated. The following stakeholder inter-
ests were identified by the students: Relevance, Learnability, Response Time, Cost,
Adaptability, Extensibility, Reliability, Maintainability. While relevance is frequently men-
tioned in the literature describing the Artifact Trace Model, the others were not. As such, these
attributes indicate attributes that are of real interest to the stakeholder. However, most of them
lean towards actual quality attributes rather than higher-level stakeholder interests such as rel-
evance.

Imperfect Requirement Specifications in the Design Tree Model

The second element of the pilot study consisted of identifying a number of design issues that
need to be resolved, and trace the contemplated and selected alternative solutions using the
Design Tree approach. Since the groups started with identical requirement specifications uni-
formity to a certain extent was expected in the design issues that should be resolved. This is
strenghtened by the fact that the requirement specifications for both systems are fairly similar.
Below the design issues are listed for the Traffic Management System and the Data Collection
and Storage System.

Design Issues for the Traffic Management System

• How to collect information from various sources and locations?

• How can the system store task and scenario information?

• How can task information be stored in a usable and adaptable manner?

• How can scenario information be stored in a usable and an adaptable manner?

• How can data be formatted to display on screen?

• How can the system become scalable?

• How can the system be connected with other systems?

• How do we support multiple sources reporting information simultaneously?

• How do we support multiple types of information?

• How do we format data?

Design Issues for the Data Collection and Storage System

• Which communication network do we use?

• How do we schedule the information retrieval?

• How do we extrapolate data in case of failure?

• How do we compress the data?

• How do we gather the information from the sensors?

Imperfect Information in Software Design Processes

144

• How do we provide a user interface to the DCS?

• How do we store data?

• Where do we store data?

• How do we control the data retrieval?

The design issues that were identified for the TMS and the DCS again show overlap, since the
functional requirements for both systems are very similar. However, there is still a rather large
variety in the design issues that were found. In the literature provided to the groups, the quality
requirements were similar to the requirements in the example cases. As a result the identified
quality attributes mostly correspond to the attributes identified in the literature. However, a
number of quality attributes were fairly new, such as training time, completeness and commu-
nication speed, which can be seen as refined attributes of, for instance, general performance or
usability. The “traditional attributes“ such as cost and overall performance were mentioned by
all the groups as relevant quality attributes. The identified quality attributes are: maintainabil-
ity, total cost, communication speed, training time, reliability, average performance, overall
performance, usability and completeness.

7.3.3 Pilot Study Evaluation

The pilot study gave a first insight into the applicability of our approach, and the issues that
need to be considered for decision support systems based on our models. The results and expe-
riences of the students during the design of the software architectures were much in line with
our assumptions on the influence of imperfect information on the software design process. In
the case that the software designers are presented with incomplete information either (implic-
itly) assumptions are made on the intended meaning or clarification is sought from the stake-
holder. For this pilot study this meant a number of enquiries from the students about the actual
meaning of the requirements specifications. The setup of the experiment to introduce the con-
cept of imperfect information at a later stage clarified and underlined the problems that occur
as a consequence. In the following, we evaluate the results of the pilot study with respect to the
use of the imperfection models as well as the use of the tooling support for the application of
the models.

Evaluation of the use of Imperfection Models

First we evaluate the use of the proposed models with respect to their ability to support soft-
ware design with imperfection information. The way in which the imperfect information in the
TMS and the DCS case were addressed by the students initially, confirmed the supposition that
imperfection is rarely identified and resolved explicitly. Rather, assumptions on the implied
meaning are made, while most students where not aware of this step. The application of the
Artifact Trace Model made this implicit step visible, which caused the groups to rethink the
requirement specifications they were given. By modeling alternative interpretations, the num-
ber of system designs that are considered increase considerably. During the pilot study the
number of system designs that were analyzed for the TMS was 45 and for the DCS even 101.
While most of these system are closely related, they typically are variants of system designs
that would not be considered without modeling imperfection in the requirement specifications.
The explicit link that is made between requirements and components improved the insight of
the groups into the system design, and the optimization capabilities of the Artifact Trace
Model enforced a structured decision making process. The modifiability of the optimization
configurations of the Artifact Trace Model enable groups to experiment with several optimiza-
tion criteria. This particular aspect was well received, since the optimized system designs in
particular cases contrasted to the intuitive judgment of the students. This forced a closer

Chapter 7: Evaluation and Conclusions

145

inspection of the proposed systems, and in particular cases revealed modeling mistakes or
component combinations that were overlooked. It was proposed by the students that for the
identification of alternative interpretations it would be beneficial to have examples based on
domain knowledge or previous design activities in the same area.

As with the Artifact Trace Model, it was well appreciated that the Design Tree Model provided
means to explicitly identify and evaluate design alternatives. As a result, the groups identified
and considered considerably more alternatives than normally would have been the case. The
Design Tree approach was especially successful in distinguishing between alternatives that
were “barely” and completely acceptable according to the quality requirements. The added
effort that is needed for its application was identified by the students as the greatest difficulty.
In particular, the fact that for every identified alternative quality estimations need to be made
was problematic, which was solved only in part by the current toolset. The tracing capabilities
of the design tree were also appreciated since they gave valuable insight into the considered
and selected alternatives. Additionally, the scale on which quality attributes are estimated is
very important. For specific quality attributes such as performance or cost the scale is well-
known (response-time or person-hours). However, for other quality requirements this is often
not the case, which can complicate the use of the model.

When we evaluate the overall approach both the Design Tree Model as well as the Artifact
Trace Model made the students aware of the existence and impact of imperfect information in
software design processes. However, the main difficulty in the pilot study was caused by the
fact that the students were not capable of acquiring and defining proper numeric input for the
methods. Where software engineers can assess the expected quality attributes based on their
experience, for students this was much more difficult. As a result it is difficult to compare the
architectures that result from the optimizations to the architectures without considering imper-
fect information, since their applicability largely depends on the validity of the inputs. Addi-
tionally, for both models the resulting systems on occasion were not applicable since the
combinations of alternatives not always reflects a desirable system.

Evaluation of the Tooling Support for Imperfection Models

Second we examine the usefulness of tooling support for the proposed imperfect information
models. As mentioned in the previous section the effort needed to apply the imperfection mod-
els can be considered the most prominent difficulty of our approach. To test the ability of the
SPOT Toolset of managing this added complexity, it was tested during the pilot study. Also
the effectiveness of the implementation was tested in this manner, since decision support for
software development processes should accurately provide the software engineers with the
desired information. During the design of the architectures of the TMS and DCS example
cases the tools demonstrated their use in reducing the complexity of the application of our
approach. However, since the example cases were rather small and the pilot study limited in
the available time, the scalability of our approach can not be completely assessed based on
these results. The first indications from this pilot study indicate that the toolset, combined with
the proposed improvements, is capable of managing the increased workload.

The way in which tooling support is implemented and offered to the software engineers can be
used to ensure the proper usage of the proposed imperfection models. By defining a strict
workflow, and supporting this with automated decision support and design knowledge, the
software engineer can use the models without being faced with an unacceptable increase in
design effort. In the current toolset this workflow is not yet complete enough to ensure the
proper usage of the functionality. Since the toolset was implemented as a proof-of-concept it is
not always clear for the user which inputs are needed, and how to provide them. The ergo-
nomic improvements proposed by the students were therefore aimed at structuring the complex
inputs understandably and the reuse of available information to support the software engineer
in the understanding of the software design process.

Imperfect Information in Software Design Processes

146

7.3.4 Starting Point for Empirical Validation of Imperfection Models

The pilot study we have performed to assess our approach has given us a first indication of the
benefits and drawbacks. It also provided insights on attention points for conducting an empiri-
cal experiment of the proposed models. In this section we identify the points of attention which
will be used as the starting point for empirical validation of our approach.

Goal Definition

The most important element of an empirical experiment is the definition of a measurable goal.
For our approach there are aspects that can be assessed: the first is the applicability of our
approach and the second is the level of support that is offered by implemented tool sets. How-
ever, from the pilot study it has become clear that manual application of our approach in an
experimental setting quickly becomes unmanageable. It is therefore advisable to evaluate the
approach and the supporting toolset in a single experiment setting.

The goal of the approach is to support imperfect information in software design processes,
with the aim to reduce the amount of work needed at the moment the imperfection is removed
by an external influence. Therefore the goal of the experiment should be: the analysis of the
impact of imperfection with respect to the effort needed to adjust to new interpretations of
imperfect requirements.

Evaluation Model

To ensure an objective evaluation of the experiment results, the comparison of resulting archi-
tectures should be well-defined. The main goal of our approach is to make software design
more resilient to imperfect information by including imperfection descriptions in the software
design. The benefit of such a design over a traditional design would therefore lie in its ability
to support alternative interpretations of the imperfect information. As a result, the amount of
effort needed to adjust the design to the refined requirement specification should therefore in
general be reduced.

To measure this improvement, a metric needs to be defined that captures the effort of adjusting
designs to refined requirement specifications. Such a metric in particular should focus on
either the amount of time and effort needed or the costs generated by the resolved imperfection
in the requirement specification. Naturally, such a metric will depend on the flexibility and
experience of the design team as well as the flexibility of the software design and the type of
project. Therefore, to draw valid conclusions from the empirical experiment the evaluation
needs to be performed over multiple design teams and projects.

In addition, the sensitivity of the model also needs to be assessed, in particular with respect
how the values that result from the models can be used. By experimenting with small varia-
tions the required accuracy for the models need to be assessed.

Overall Experiment Structure

For the empirical validation the experiment should faithfully capture the industrial setting in
which imperfect information can manifest itself. To analyze the benefits of our approach first a
software architecture needs to be designed based on an imperfect requirement specification by
a team with and a team without imperfect information models and tooling support. In the sec-
ond phase the imperfection in the requirement specification is systematically removed, after
which both groups have to adjust their designs accordingly. After each adjustment step the
effort needed by the teams is measured and summarized. For the assessment in general this

Chapter 7: Evaluation and Conclusions

147

process should be repeated for multiple imperfect requirement specifications as well as with
additional groups to eliminate the influence of experience and “lucky“ choices.

Experiment Setting and Test Group

The setting of the experiment and the groups performing the system design need to be consid-
ered carefully. The results from the pilot study suggest that the example cases containing
imperfect information must be based on actual requirement specifications since the lack of a
real-world background could keep the experiment setting too abstract, which leads to undesir-
able results. Therefore it is advisable that example cases are defined based on existing projects
and modifications of existing requirement specifications. In this manner also the architecture
resulting from the experiment can be compared to the actual design from the case.

Additionally it is very important that the groups performing the design activities in the empiri-
cal experiment are sufficiently experienced in the design of software systems and architec-
tures. Since the imperfection models require relevant estimations and inputs from the software
engineers in order to provide meaningful decision support, it is vital for the groups to have the
relevant design experience and insights to provide these inputs.

7.4 The Problem of Imperfection in Software Design Processes
In this thesis we have identified the existence of imperfect information as a prominent problem
during software development. Under the best of circumstances the design of software systems
has proven to be very difficult, but typically software development is performed under circum-
stances that are considerably less than ideal. Requirement specifications are subject to changes,
expectations can misrepresent the quality of the completed system and the input received from
stakeholders can be vague and unclear. We have identified that imperfect information can orig-
inate from many sources, such as the stakeholders, the software engineers, measurements,
etcetera.

While it is acknowledged by most software development processes that providing precise
requirement specifications is vital for the delivery of high quality software, only few offer
explicit support for the definition of such requirements. Nonetheless, modern software design
processes are aware that requirements are likely inaccurate and subject to change, and incorpo-
rate mechanisms to address the consequences. Most software development processes use itera-
tive design as the primary means to address consequences of imperfect information. By
evaluation of the design after the completion of development phases, software engineers can
acquire new information and adjust the design accordingly. Depending on the process, iterative
cycles can range from a number of weeks to six months or a year. In chapter 1, we have identi-
fied that the iterative cycle does not necessarily resolve all the problems caused by imperfect
information. For incremental design to succeed, we have identified four conditions that must
be fulfilled:

All-Isolation Requirement: For the design to be corrected effectively with iterative design,
all concerns must be orthogonal; otherwise concerns that are influenced by imperfect
information cannot be isolated and made perfect eventually.

All-Always Requirement: For the design to be corrected effectively with iterative design,
all requirements must be frozen; All requirements must always stay the same.

All-at-Once Requirement: For the design to be corrected effectively with iterative design,
all unknowns of a dependent design part must be resolved at the same time, otherwise there
will be always some influence of imperfect information

Imperfect Information in Software Design Processes

148

All-Infinite Requirement: For the design to be corrected effectively with iterative design,
all the required resources must be infinitely available, otherwise iterations cannot be applied
until the imperfections are resolved.

Obviously, in any realistic setting these requirements can not all be fulfilled, from which we
conclude that imperfect information can not be fully resolved by iterative design. In addition,
in order to maximize the benefit of incremental design, iteration should be performed in a sys-
tematic manner. However, while this is already difficult in ideal circumstances, due to a lim-
ited understanding of imperfect information iterative development can become even less
effective.

To contain the impact of imperfect information, we have proposed a generic approach, which
identifies and describes imperfection that is present in information sources within the software
development process. These descriptions are then considered and used in subsequent steps of
the development process, such as design decisions, in order to minimize the chance of making
wrong decisions and guiding iteration cycles. To support the inclusion of imperfect informa-
tion in decision making processes, the imperfection models are used in decision support
approaches that describes software design activities. As opposed to traditional software devel-
opment methods, this approach offers the possibility to explicitly model the imperfection that
exists in the available information. With the definition of reasoning models that consider the
influence of the imperfection in the decision making process, it becomes possible to assess the
risks an opportunities that are introduced into the development process.

In accordance with the literature, we have divided imperfect information into two categories
depending on their nature, impreciseness and uncertainty. In addition, we have addressed these
types of information accordingly in our models. To offer specific support, in this thesis we
have addressed imperfect information in three areas of the software development process;
imperfect functional requirements, imperfect quality requirements and estimations, and imper-
fect market demands, each of which is implemented in the SPOT Toolset. In the following we
shortly recapitulate the individual approaches.

7.5 Resolving Imperfect Functional Requirements and Trade-off
In chapter 3, we have identified that one of the most important sources of imperfect informa-
tion in the software development is the functional requirement specification. In practice, it has
proven to be very difficult to define or attain accurate information when it is required. As a
result, the requirement specification typically contains vague statements to circumvent the lack
of knowledge about the system, which are likely to change in the near or distant future. Mod-
ern design methods rely on iteration to correct the changes in the requirements and the
advances in insight as the development process moves forward, however as has been identified
in chapter 1, incremental design can only correct imperfect information effectively under ideal
circumstances.

To address the problems caused by imperfect information, we have proposed to address the
imperfection in functional requirement specifications by means of fuzzy requirements, which
can be used in combination with incremental design. A fuzzy requirement replaces vague and
ambiguous descriptions in requirement specifications by a fuzzy set. Each element in the fuzzy
set is a possible interpretation of a single ambiguous description, and is attributed with mem-
bership values that represent evaluations of stakeholders, such as relevance or urgency. During
the subsequent steps, all interpretations are included in the design process as normal require-
ments, which means the system design fulfills a broadened requirements specification. In the
case new insights or changes in requirements occur, the adjustment of the design during an
iteration should consist of removing the invalidated interpretations and the associated interme-
diate design artifacts and components. To avoid that the inclusion of alternative interpretations
in the development process leads to an unacceptable increase in the implementation effort, at

Chapter 7: Evaluation and Conclusions

149

any point the design can be streamlined by evaluating requirement combinations based on
stakeholder interests.

To facilitate the evaluation and removal of alternative interpretations from fuzzy requirements,
we have introduced the Artifact Trace Model. This model describes the relationships between
intermediate design artifacts, such as problem definitions or components and classes. By
explicitly tracing the decomposition and overlap that result from the design steps, it is possible
to determine for each requirement and interpretation which components and/or classes are
needed and vice versa. In addition, we have defined an approach to compute stakeholder inter-
est values for the implementation of a given set of components, based on the requirements and
interpretations that are satisfied by this implementation. The approach offers decision support
to the software engineer by systematically exploring and evaluating all the combinations of
alternative interpretations based on the implementation effort and stakeholder interest values.
To facilitate a trade-off analysis approach, which can offer decision support from the various
views that are of interest to the software engineers and stakeholders, we have defined an opti-
mization approach that evaluates alternative system designs based on the identified optimiza-
tion criteria, while considering restrictions on other attributes. With the specification of
restrictions and optimizations, it possible to define optimizations that represent typical inter-
ests, such as a maximization of relevance while not exceeding a certain budget, or the minimi-
zation of cost while still having sufficient relevance. The approach is fully configurable with
respect to the importance of stakeholder interests, which makes it possible to accurately repre-
sent the considerations for the trade-off.

With this approach we have reduced the necessity to completely fulfil the All-At-Once-
Requirement and the All-Always-Requirement, which have been defined in chapter 1. The first
requirement stipulated, that for successful iteration all the imperfect information must be
removed at the same design moment. This restriction is less stringent when our approach is
used, since at every point the imperfection is known and modeled. Therefore the design
becomes more flexible, which makes it less vulnerable to future changes. The All-Always-
Requirement requires that all the requirements must always describe the same information.
With the inclusion of multiple alternative interpretations of vague information, it becomes less
likely that the arrival of new insights fall outside the requirement specification. As a result, the
requirement specification more closely adheres to the All-Always-Requirement, which facili-
tates incremental design.

7.6 Supporting Imperfection in Quality Evaluations
In chapter 4 we have identified quality requirements and quality estimations as the second
important area, where imperfect information can have a severe influence on the software
development process. During the design of software systems, quality requirements are used as
a benchmark for the evaluation of candidate solutions. By assessing how well the expected
quality attributes adhere to the defined quality requirements, it is possible to evaluate multiple
design alternatives and select the one that has the best “quality fit“. In most modern design pro-
cesses this evaluation and comparison step is not indicated explicitly, although a number of
approaches have been proposed as a starting point [Kazman1994] [Kazman1998]. The correct-
ness of the evaluation of design alternatives depends on the accuracy of both the quality
requirements as the quality estimations. However, as with the definition of functional require-
ments, the definition of quality requirements is subject to imperfection due to a lack of knowl-
edge and insights. Even more so, imperfection is intrinsically part of quality estimations, since
they are an approximation of the quality values of the resulting system that offer no guarantee
about their accuracy. Whenever one of these elements, or both, is misrepresented by seemingly
accurate values, the evaluation based on these values can lead to invalid results and wrong
design decisions. While the usage of quality requirements and estimations for the assessment
of design alternatives infers a considerable risk, there is no alternative method to resolve

Imperfect Information in Software Design Processes

150

design issues. Similar to functional design, adjusting design decisions by means of iterations
requires ideal circumstances to be performed effectively.

To address the problems identified in chapter 4, we have extended the expressiveness of qual-
ity requirements and estimations with models for describing the imperfection that can be
present. Depending on the nature of the imperfection, for example a variance, tolerance, or
probabilistic dependency, software engineers can choose from probabilistic, fuzzy set and
fuzzy probabilistic models to give an accurate description of the imperfect nature of the avail-
able information. The introduction of these models for the specification of imperfect quality
requirements and estimations requires the definition of comparison operators to ensure a uni-
form evaluation of design alternatives. To facilitate this evaluation mechanism, we have
defined the concept degree of fulfilment. This is a number in the range [0, 1] that indicates the
degree to which an estimation satisfies its respective requirement. Using only either zero or
one corresponds to the classical crisp case, where one means “completely satisfies” and zero
means “completely does not satisfy”. The evaluation of imperfect estimations with crisp or
imperfect requirements results in a degree of fulfilment that lies between zero and one, and is
an indication of the risk that is involved with design alternatives. In chapter 4 we have defined
comparison operators for all combinations of imperfection models that result in a uniform
description of the degree of acceptance. The operators in chapter 4 for comparing fuzzy
requirements and fuzzy estimations are based on triangular fuzzy numbers and semi-trapezoi-
dal fuzzy intervals, but in appendix B a generic approach for its derivation is given.

To complement the imperfection models in chapter 4, we have defined the Design Tree Model,
a trace model that records the sequence of the design issues that have been addressed, and the
alternatives that have been considered. In addition, for each alternative the quality evaluation is
stored, which has full support for imperfection in both requirements and estimations. Our
approach provides the software engineer with advice on which alternatives to select, but also
on which state the design should roll back to in the case the current design is no longer satis-
factory. The Design Tree model supports this approach with configurable strategies, which are
aimed at for instance maximization of quality or minimization of development time. With this
approach, the influence of three of the requirements for successful iterative design is reduced.
The All-At-Once-Requirement and the All-Always-Requirement, as with the Artifact Trace
Model approach, is reduced since it is possible to maintain and use imperfect information dur-
ing the evaluation of design alternatives. This makes it possible to perform reasonable evalua-
tions at most points of the development process. Finally, the restriction of the All-Infinite-
Requirement is somewhat contained by the decision support for the selection of design alterna-
tives. Since typically software development is performed with limited resources, optimal usage
of these resources is very desirable. With the optimization capabilities of the Design Tree
approach, a more effective approach to iterative design can be facilitated.

7.7 Project Scheduling under Probabilistic Market Demands
The third approach that is proposed in this thesis, addresses to presence of imperfection in mar-
ket demand expectations. Since software systems are being applied in an increasing amount of
environments and they become increasingly more complex due the level of sophistication that
is required, software projects become very hard to manage. As a consequence of the size of
software projects, during release planning and resource scheduling many inputs have to be
considered simultaneously. In particular in the field of application frameworks and product
lines the implementation schedule is very important, due to the dependencies between reusable
assets and actual products.

Since products in such environments are typically assembled from reusable components, it is
vital that all these components have been implemented before these products are demanded.
This means, that during the planning the expected market demands need to be considered.

Chapter 7: Evaluation and Conclusions

151

However, in chapter 5 we have identified that it very difficult to make a correct production of
the market demands in the future, due to the uncertain information on the occurrence of events
that influence the demand. In chapter 5, we have proposed an approach that can determine
scheduling advice for the implementation of software products based on market demand
expectations, component dependencies and resource restrictions.

The imperfection support in this approach, lies in the models that are made of market demand
expectations. We propose to model the uncertainty about the market demands in the future by
means of probabilities, in a similar manner to, for example, options theory. Market experts, in
accordance with software engineers and project managers, typically define a number of out-
looks on the market. These outlooks describe market demand situations that potentially can
occur in the future. Each of the outlooks is attributed with a probability function, which
describes the probability of the demand state’s occurrence. The demand states are considered
at each point where resources are allocated to components of the application framework. To
represents all possible sequences of demand states that can be derived from a given set of out-
looks, a graph-based structure called the scenario graph is defined.

The controllable inputs for scheduling optimization lie in the choices that can be made on the
allocation of resources. The decision graph, in a manner comparable to the scenario graph, is a
compact representation of the resource allocation decisions that can be taken at given points
during the development. This graph can be determined based on the estimated implementation
effort, dependency structure of the components and products and the available resources. The
model is capable of considering restrictions that apply on the choices that can be made, such as
the implementation order of components, or a limited availability of resources. In accordance
with the time period set by the scenario graph, the decision graph contains the possible produc-
tions plans over the same time period. The final step in the resource allocation approach is the
evaluation of this information by computing a combined graph of the decision graph and the
scenario graph. In this combined graph each production plan is evaluated with each scenario
by calculating the expected profit for each decision from the current demand state. The result-
ing scheduling advice indicates the best action given a demand state and the work completed
on the components and products. In addition, it is possible to explore the complete combined
graph, to get additional insights into “what-if“ scenarios and the consequence of alternative
allocations of resources.

The imperfection that is addressed in this approach can not be solved by means of iterative
design, since the imperfection is not part of the software designs. Therefore, this approach does
not directly resolve one of the requirements for successful iterative design, as defined in chap-
ter 1. Nonetheless, the resource allocation optimization facilitates the optimal usage of
resources, which increases the available resources for incremental design steps.

7.8 Discussion
In this thesis, we have introduced three models for the support of imperfect information in soft-
ware design processes. Each of these models captures the imperfection by means of numerical
representations based on probability theory and fuzzy set theory. With these models we have
enhanced the capabilities of the software design process and therefore the impact imperfection
information can have is reduced. Nonetheless, for each approach we have raised a number of
discussion points, to identify the benefits and weaknesses of our approaches. In this section,
we examine the overall benefit by discussing the proposed approaches with respect to the fol-
lowing concerns:

Imperfect Information in Software Design Processes

152

Can imperfection in software design processes be avoided?

In each of the three approaches proposed in this thesis, we have defined models that can
describe imperfection in the available information. With this type of approach, it is possible to
consider the imperfection in the decision making process. If it would be possible to avoid the
introduction of imperfection in the software development process, there would be no need for
this type of model. However, in chapter 1 we have identified that imperfection is an inherent
property of the information that is used in design processes. With a rigorous approach to col-
lecting the information, the amount of imperfection can be minimized, but only in a very lim-
ited number of cases can it be avoided. The failure of the waterfall-model, and the general
acceptance of iterative and agile approaches is a clear illustration of this fact. We conclude that
imperfection can not be avoided during software design. Nonetheless, the iterative correction
does not offer a complete solution, due to the All-at-Once, All-Always, All-Isolation and All-
Infinite-Requirement, which were identified in chapter 1. Explicit support for imperfection is
therefore required to complement iterative design at the inevitable moment that imperfection is
encountered.

Do the proposed models describe the relevant properties of imperfect information
accordingly?

The imperfection models that have been proposed in this thesis are based on probability theory
and fuzzy set theory. It can be questioned how well these models are able to capture the nature
of the imperfection that can occur in the information used during software development. The
imperfection in the design information, however, does not necessarily always correspond to
what can be described by probability and fuzzy set theory. But while it is true that these models
do not always reflect the actual nature of imperfection, not acknowledging imperfection or try-
ing to avoid imperfection altogether is worse still. In this case, the consequences of imperfec-
tion can solely be corrected by additional iterations, which are only capable of this up to a
certain degree. Therefore, while the proposed models certainly do not facilitate all types of
imperfect information to be included, they offer a good starting point from which more intri-
cate approaches can be derived in the future.

How do we acquire the applicable definitions for fuzzy sets and probability distributions?

For the proposed approaches, it is very important to define the “right” fuzzy sets and probabil-
ity distributions to represent the imperfection. The use of imperfection models adds an extra
level of detail for expressing information, however the correctness of the results very much
depends on the correctness of these inputs. In addition, it should be noted that probability dis-
tributions have long been used to model for instance performance of computer systems with a
probabilistic nature. Additionally, fuzzy set theory offers the possibility to use linguistic vari-
ables [Zadeh1975] to refer to standard definitions of fuzzy sets within a particular area. This
can be used to model domain specific information. In this way generic information can be cap-
tured and processed by abstracting away from the mathematical definition of the fuzzy sets.
Also, from our early experimentations it became clear that the usage of fuzzy sets and proba-
bility distributions became quite natural. In particular imperfection like variance and tolerance
was easily captured with, for example, triangular fuzzy numbers. The implementation of the
toolset also assists greatly in the usage of the models. In addition to facilitating experimenta-
tion with specific fuzzy sets and probability distributions, it enables the software engineers to
refine the imperfection specifications at later stages. Nonetheless, the usefulness of the results
heavily depends on the accuracy and relevance of the inputs. Therefore it is very important to
assess the sensitivity of the results to variations and changes in the inputs. While at this time,
the sensitivity of the models has not been charted, an empirical evaluation is planned for the
future to assess the sensitivity and adjust the models accordingly, if needed.

Chapter 7: Evaluation and Conclusions

153

Will the proposed approaches scale up to industrial settings?

A discussion point that has been raised for all the approaches in the respective chapter is the
scalability. The imperfection approaches require additional effort to be performed during the
development process. This warrants the question on whether these approaches will scale to
industry-size applications. However, the increased effort that is needed for the application of
the models is compensated, since it reduces the need for corrective actions that a result from
imperfect information. Additionally, the approaches support the systematic exploration of
design alternatives, which can reduce the need for expensive optimization activities for the
resulting designs. The support of the approaches by set of tools further reduces the required
effort. As a result of these considerations, we believe that the extra activities required for the
application of this approach will not create overhead that is larger than the gains. The initial
results from the pilot study support the supposition that our approach will scale to industrial
settings. Nonetheless, in order to properly assess the usability of our approach in an industrial
context, an empirical evaluation is required. We have planned an empirical experiment based
on the results of the pilot study in this chapter, which should give a more detailed insight into
the applicability of our approach in an industrial context.

7.9 Reflection and Future Work
The models that have been proposed in this thesis are the starting point for a new approach to
dealing with imperfect information in software development processes. In contrast to modern
design processes, we propose to accept imperfect information as an integral part of software
design, since it will be inherently present even when it is not always visible. Rather than stabi-
lizing design solely based on incremental design and iterations, our approaches model imper-
fection and use these models to optimize decision making and minimize the amount of
iterations needed. With these models we have taken the first step, but to handle imperfect
information in design processes accordingly there are many unanswered question and continu-
ation points. In the following we define the research outline for the continuation and extension
of imperfection support during software development.

The most important next step in the research is the validation of the approach by means of
empirical experiments. While the results of the conducted pilot study show promising results,
it is important that the usability and scalability of our approach is tested in a representative
environment. To achieve this, future research should define a uniform manner to compare the
results from development processes with and without explicit support for imperfect specifica-
tions. In chapter 7, we have defined an outline for empirical validation, but at this point usable
metrics for expressing the quality of design processes still need to be defined. An empirical
validation provides valuable insights and feedback on the fine tuning of the approach and the
toolset implementation.

The second continuation point is the integration of the individual approaches into a large scale
decision support model. The Artifact Trace Model and the Design Tree Model intuitively have
a clear connection, which at this moment is not defined. Each refinement step in the Artifact
Trace Model can be the result of a design issue where multiple alternatives have been consid-
ered. In a combination of these approaches it would be possible not only to indicate the design
state to roll back to, but also the impact on the design and the implemented alternatives. This
should enable the possibility of a trade-off between quality attributes on one side and, for
instance, relevance on the other. The integration of the models can further be achieved by
exploring how the resource allocation approach can steer the decision making process with
respect to probabilistic inputs and complex limited inputs. Since the resource allocation model
has a generic definition, it is possible to adjust the approach to other quantifiable decision and
reward states, such as refactoring or overall project strategies.

Imperfect Information in Software Design Processes

154

One of the areas where imperfection models in the future can proof their added value is in the
modeling of domain information and design heuristics. In recent years, software development
methods have been proposed that consider domain information during the design process.
While this information generally gives good indications on how to design systems within a
particular domain of expertise, it is typically a general steering direction. The information can
therefore be considered as reusable imperfect design advice, which makes it a natural candi-
date to be modeled and considered as such. In a similar manner the design heuristics that exist
in a variety of development methods are candidates to be modeled using imperfection models.
In particular linguistic variables, as introduced by [Zadeh1975], offer excellent opportunities
to capture the imperfect design knowledge in a usable and reusable form, without neglecting
the inherent danger of relying on such rules of thumb.

In an ideal picture, the presence of imperfect information in any of the inputs of a software
development process do not limit the design capabilities of software engineers. Rather, imper-
fect information enhances the design possibilities that are available and therefore should be
included in the design process up to the point where it is no longer applicable or manageable.
With the models proposed in this thesis, we have taken a first step to achieve this. In the long
term, research in this area should result in a full scale support of imperfect information from
the early conception of requirements until the delivery of the final system. At any time it
should also be possible to refine imperfection models that are used in subsequent states, as well
as that it should be possible to remove imperfection models in a consistent and usable manner.
When this is achieved, the activity of designing software will have come a step closer to matu-
rity, since robust and defensive design starts with a proper understanding and usage of all
inputs in the development process, as imperfect as they may be.

References

155

Chapter 0REFERENCES

The quotes that are included at the beginning of each chapter originate from the book Dune, by
Frank Herbert [Herbert2005]. I was first introduced to this work at the age of 14 and I have
been fascinated with the amazingly rich and intricate universe created in the books ever since.
It feels only right therefore, that I pay tribute at this point to Frank Herbert and the Dune uni-
verse.

One of the main topics of Dune is related to the topics that have been covered in this thesis. In
the Dune universe, a sisterhood called the Bene Gesserit aims to produce the perfect human
specimen by means of bloodline manipulation, which has been ongoing for thousands of gen-
erations. The main character in the first books of Dune, turns out to be this perfect human and
in the end becomes the emperor of the known universe. But even while this perfect being
becomes the leader of the universe, society itself becomes far from perfect. The masses start to
worship the new emperor and holy wars are started to bring this "faith" to the unknowing.

When this is interpreted in the context of this thesis, it is obvious that searching for perfection
is not an answer. It can be very difficult to attain and might not bring what was expected of it
initially. Rather, imperfection should be accepted as a natural state and something that one
must always be aware of. Ignoring imperfection can result in bad situations, even when it is in
the presence of perfection.

Imperfect Information in Software Design Processes

156

[Aksit2001] Aksit, M. & Marcelloni, F. (2001), 'Deferring Elimination of Design
Alternatives in Object-Oriented Methods', in Concurrency and Com-
putation: Practice and Experience, Wiley, pp. 1247-1279.

[Aksit2001a] Aksit, M. & Marcelloni, F. (2001), 'Leaving Inconsistency Using
Fuzzy Logic', in Information and Software Technology 43(10), pp.
725-741.

[Antonsson1996] Antonsson, E. & Otto, K. (1996), 'Improving Engineering Design
with Fuzzy Sets', in Fuzzy Information Engineering, pp. 633-654.

[Bellman1961] Bellman, R. (1961), Adaptive Control Processes: A Guided Tour,
Princeton University Press, Princeton, NJ.

[Barbacci1998] Barbacci, M.; Carriere, S.; Feiler, P.; Kazman, R.; Klein, M.; Lipson,
H.; Longstaff, T. & Weinstock, C. (1998),'Steps in an Architecture
Tradeoff Analysis Method: Quality Attribute Models and Analy-
sis' (ESC-TR-97-029), Technical report, Carnegie Mellon University/
Software Engineering Institute.

[Besnard1989] Besnard, P. (1989), Introduction to default logic, Springer-Verlag,
Berlin.

[Boehm1986] Boehm, B., (1986), 'A spiral model of software development and
enhancement', in ACM SIGSOFT Software Engineering Notes, 11,
issue 4, pp. 14-24.

[Bonissone1985] Bonissone, P.P. & Tong, R. M. (1985), 'Reasoning with uncertainties
in expert systems', in International Journal of Man Machine Studies,
22, pp. 241-250.

[Bosc1993] Bosc, P. & Prade, H. (1993), 'An introduction to fuzzy set and possi-
bility theory based approaches to treatment of uncertainty and impre-
cision in database management systems', in Proceedings of the 2nd
Workshop on Uncertainty Management in Information Systems: From
Needs to Solutions, Catalina, CA.

[Bowen1990] Bowen, J.; O'Grady, P. & Smith, L. (1990), 'A Constraint Program-
ming Language for Life-Cycle Engineering', in Artificial Intelligence
in Engineering, Computational Mechanics Publications, pp. 206-220.

[Brown1991] Brown, P.G. (1991). 'QFD: Echoing the Voice of the Customer', in
AT&T Technical Journal, March/April, pp. 21-31.

References

157

[Bubenko1994] Bubenko, J.; Rolland, C.; Loucopoulos, P. & Antonellis, V.D. (1994),
'Facilitating "Fuzzy to Formal" Requirements Modelling', in Pro-
ceedings IEEE International Conference on Requirements Engineer-
ing, IEEE Publishing.

[Buckley2003] Buckley, J.J. (2003), Fuzzy Probabilities New approach and applica-
tions, Springer Verlag.

[Carver2003] Carver, J.; Jaccheri, L.; Morasca, S. & Shull, F. (2003) 'Using Empir-
ical Studies during Software Courses', in (eds.) Reidar Conradi and
Alf Inge Wang Lecture Notes on Computer Science, Springer-Verlag
Heidelberg.

[Chung1992] Chung, S.; Hanson, F. & Xu, H. (1992), 'Parallel stochastic dynamic
programming: finite elements methods', in Linear Algebra and
Applications, 172, pp. 197-218.

[Clements2004] Clements, P.; Bachmann, F.; Bass, L.; Garlan, D.; Ivers, J.; Little, R.;
Nord, R. & Stafford, J. (2004), in Documenting Software Architec-
tures, Addison Wesley.

[Cmitile1992] Cimitile, A.; Lanubile, F. & Visaggio, G. (1992), 'Traceability Based
on Design Decisions', in Proceedings of Conference on Software
Maintenance, IEEE Press, pp. 309-317.

[Davis1990] Davis, A.M. (1990). 'Software Requirements: Analysis and Specifica-
tion', Prentice-Hall, Inc.

[Egyed2006] Egyed, A. & Wile, D.S. (2006), 'Support for Managing Design-Time
Decisions', in IEEE Transactions on Software Engineering 32(5), pp.
299-314.

[Fayad1999] Fayad, M. E.; Schmidt, D. C. & Johnson, R. E. (1999), Building
Application Frameworks, Wiley Computer Publishing, ISBN: 0-471-
24875-4.

[Finkelstein1994] Finkelstein, A.; Kramer, J. & Nuseibeh, B.Finkelstein, A.; Kramer, J.
& Nuseibeh, B. (ed.) (1994), Software process modelling and tech-
nology, Research Studies Press Ltd.

[Forman2001] Forman, E. & Sally, M. (2001), Decision by Objectives, World Scien-
tific, ISBN: 981-02-4142-9.

Imperfect Information in Software Design Processes

158

[Foulds1984] Foulds, R. L. (1984), Combinatorial Optimization for Undergradu-
ates, Springer, New York, ISBN: 0-387-90977-X.

[Fudenberg1991] Fudenberg, D. & Tirole, J. (1991), Game Theory, MIT Press, 1991,
ISBN 0-262-06141-4.

[Gray1998] Gray, A. R. & MacDonnel, S. G.. (1998), 'Fuzzy Logic Techniques
for Software Metrics Models of Development Effort', in Pedrycz, W.
& Peters, J. F. (eds) Computational Intelligence in Software Engi-
neering, World Scientific Publishing, 981-02-3503-8.

[Gregoriades2005] Gregoriades, A. & Sutcliffe, A. (2005), 'Scenario-Based Assessment
of Nonfunctional Requirements', in IEEE Transactions on Software
Engineering, IEEE Computer Society, pp. 392-409.

[Haykin1998] Haykin, S. (1998), Neural Networks: A comprehensive foundation,
Prentice Hall.

[Herbert2005] Herbert, F. (2005), The Great Dune Trilogy, Gollancz, ISBN-10:
0575070706, ISBN-13: 978-0575070707

[Jacobson1999] Jacobson, I.; Booch, G. & Rumbough, J. (1999), The Unified Software
Development Process, Addison Wesley.

[Kaindl1993] Kaindl, H. (1993), 'The missing link in requirements engineering', in
SIGSOFT Softw. Eng. Notes 18(2), pp. 30-39.

[Kaiser1994] Kaiser, G.E.; Popovich, S. & Ben-Shaul, I.Z. (1994), 'A Bi-Level
Language for Software Process Modeling', in Walter Tichy (ed.),
Configuration Management, John Wiley and Sons, Ltd.Baffins Lane,
Chichester, West Sussex PO19 1UD, England, pp. 39-72.

[Kang1990] Kang, K.; Cohen, S.; Hess, J.; Novak, W. & Peterson, A. (1990), 'A
Feature Oriented Domain Analisys (FODA) Feasability Study',
CMU/SEI-90-TR-21 ESD-90-TR-222, Software Engineering Insti-
tute, Carnegie Mellon University, Pittsburgh.

[Karlsson1997] Karlsson, J. & Ryan, K. (1997), 'Prioritizing Requirements Using a
Cost-Value Approach', in IEEE Software, September/October issue,
pp. 67-74.

[Karolak1995] Karolak, D. W. (1995), Software Engineering Risk Management,
Wiley, ISBN: 978-0-8186-7194-4.

References

159

[Kazman1994] Kazman, R.; Bass, L.; Abowd, G. & Webb, M. (1994), 'SAAM: a
method for analyzing the properties of software architectures', in Pro-
ceedings of 16th International Conference on Software Engineering,
IEEE, pp. 81-90.

[Kazman1998] Kazman, R.; Klein, M.; Barbacci, M.; Longstaff, T.; Lipson, H. &
Carriere, J. (1998), 'The Architecture Tradeoff Analysis Method', in
4th Int’l Conference on Engineering of Complex Computer Systems,
IEEE Computer Society Press, pp. 68-78.

[Klir1995] Klir, G.J. & Yuan, B. (1995), Fuzzy Sets and Fuzzy Logic, Prentice
Hall.

[Kniesel2002] Kniesel, G.; Noppen, J.; Mens, T. & Buckley, J. (2002), 'The First
International Workshop on Unanticipated Software Evolution', in
Lecture Notes in Computer Science, Springer-Verlag, pp. 92-106.

[Kroll2003] Kroll, P. & Kruchten, P. (2003), The Rational Unified Process Made
Easy, Addison Wesley, ISBN: 0-321-16609-4.

[Kruchten1999] Kruchten, P. (1999), The Rational Unified Process - An Introduction,
Addison Wesley, ISBN: 0-201-60459-0.

[Larson1965] Larson, R. (1965), 'Dynamic programming with reduced computa-
tional requirements', in IEEE Transactions on Automatic Control,
AC-14, pp. 135-143.

[Larson1968] Larson, R. (1968), State Increment Dynamic Programming, Ameri-
can Elsevier, New York, NY.

[Law1995] Law, W.S. & Antonsson, E.K. (1995), 'Optimization Methods for Cal-
culating Design Imprecision', in Advances in Design Automation,
ASME, pp. 471-476.

[Lee1991] Lee, J. & Lai, K. (1991), 'What’s in design rationale'. in Human-Com-
puter Interaction, 6(3–4), pp. 251-280

[Lee2003] Lee, J.; Kuo, J.; Hsueh, N. & Fanjiang, Y. (2003), 'Trade-off require-
ment engineering', in Jonathan Lee (ed.) Software Engineering with
Computational Intelligence, Springer, pp. 51-72.

[Lethbridge2005] Lethbridge, T.C. & Laganière, R. (2005), Object-Oriented Software
Engineering Practical Software Development using UML and Java,
McGraw Hill.

Imperfect Information in Software Design Processes

160

[Liu2005] Liu, X. & Da, Q. (2005), 'A Decision Tree Solution Considering the
Decision Maker's Attitude', in Fuzzy Sets and Systems, Elsevier, pp.
437-454.

[Mamdami1981] Mamdami, E. H. & Gaines, B. R. (eds.), (1981), Fuzzy reasoning and
its applications, Academic Press, New York.

[Marcelloni1999] Marcelloni, F. & Aksit, M. (1999), 'Reducing Quantization Error and
Contextual Bias Problems in Software Development Processes by
Applying Fuzzy Logic', in Proceedings 18th Int. Conference of
NAFIPS, IEEE, ISBN 0-7803-5211-4.

[Martin2003] Martin, R.C. (2003), Agile Software Development, Prentice Hall,
ISBN: 0-13-597444-5.

[Mayrhauser1998] Von MayrHauser, A., Anderson, C. W., Chen, T., Mraz, R. & Gideon,
C. A. (1998), 'On the promise of neural networks to support software
testing', in Pedrycz, W. & Peters, J. F. (eds) Computational Intelli-
gence in Software Engineering, World Scientific Publishing, 981-02-
3503-8.

[McCall1991] McCall, R. J. (1991), 'PHI: A conceptual foundation for design
hypermedia', in Design Studies, 12(1), pp. 30-41.

[McCarthy1986] McCarthy, J. (1986), 'Applications of circumscription to formalising
commonsense knowledge', in Artificial Intelligence, 28, pp 89-116.

[McCarthy1980] McCarthy, J. (1980), 'Circumscription - a form of non-monotonic rea-
soning', in Artificial Intelligence, 13, pp 27-39.

[Molter1999] Molter, G. (1999), 'Integrating SAAM in Domain-Centric and Reuse-
Based Development Processes', in Proceedings of the Second Nordic
Workshop on Software Architecture, pp. 1103-1581.

[Moore1985] Moore, R. C. (1985), 'Semantical considerations in nonmonotonic
logic', in Artificial Intelligence, 25, pp 75-94.

[Nilsson1986] Nilsson, N. (1986), 'Probabilistic logic', in Artificial Intelligence, 28,
pp. 71-87.

[Noppen2004] Noppen, J.; Broek, P. van den & Aksit, M. (2004), 'Dealing with
Fuzzy Information in Software Design Methods', in Scott Dick;
Marek Reformat; Lukasz Kurgan; Petr Musilek & Witold Perdycz

References

161

(ed.) Proceedings of the 2004 Annual Meeting of the North American
Fuzzy Information Processing Society, IEEE, IEEE Operations Center
445 Hoes Lane Piscataway, NJ, 08854-4150 USA, pp. 22-27.

[Noppen2004a] Noppen, J.; Aksit, M.; Nicola, V. & Tekinerdogan, B. (2004), 'Mar-
ket-Driven Approach Based on Markov Decision Theory for Optimal
Use of Resources in Software Development', in IEE Proceedings Soft
ware 151(2), pp. 85-94.

[Noppen2005] Noppen, J.; Broek, P. van den & Aksit, M. (2005), 'Dealing with
Imprecise Quality Factors in Software Design', in Barry Boehm;
Sunita Chulani; June Verner & Bernard Wong (ed.) Proceedings of
the Third Workshop on Software Quality, pp. 40-45.

[Noppen2005a] Noppen, J.; Broek, P.van den & Aksit, M. (2005), 'A Model for Qual-
ity Optimization in Software Design Processes', in Proceedings of
Net.Objectdays 2005, 6th International Conference on Object-
Oriented and Internet-Based Technologies, Concepts, and Applica-
tions for a Networked World, TranSIT GmbH, pp. 529-541.

[Noppen2007] Noppen, J.; Broek, P. van den & Aksit, M. (2007), 'Imperfect
Requirements in Software Development', in Proceedings of Require-
ments Engineering: Foundations for Software Quality 2007, LNCS
4542, Springer, pp. 247-261.

[Noppen2007a] Noppen, J.; Broek, P. van den & Aksit, M. (2007), 'Software Devel-
opment with Imperfect Information', in Soft Computing: Special
Issue on Software Engineering and Soft Computing, Springer, to
appear.

[Osterweil1997] Osterweil, L. (1997), 'Software Processes are software too, revisited:
An invited talk on the most influential paper of ICSE 9', in Proceed-
ings of 19th International Conference on Software Engineering,
IEEE Press, pp. 2-13, Monterey, CA.

[Osterweil1998] Osterweil, L. (1998), 'Architecting Processes are key to software
quality', International Workshop on the Role of Software Architec-
ture in Testing and Analysis, Marsala, Italy.

[Parnas1976] Parnas, D. (1976), 'On the Design and Development of Program
Families', in IEEE Transactions on Software Engineering, Vol. SE-2,
1, pp. 1-9

[Parson1996] Parsons, S. (1996), 'Current Approaches to Handling Imperfect Infor-
mation in Data and Knowledge Bases', in IEEE Transactions on
Knowledge and Data Engineering, Vol. 8, 3, pp. 353-72.

Imperfect Information in Software Design Processes

162

[Pedrycz1998] Pedrycz, W. & Sosnowski (1998), Z. A., 'FOOD: Towards Fuzzy
Object-Oriented Systems Design', in Pedrycz, W. & Peters, J. F. (eds)
Computational Intelligence in Software Engineering, World Scien-
tific Publishing, 981-02-3503-8.

[Pedrycz1999] Pedrycz, W., Peters, J. F., Ramanna, S. (1999), 'A Fuzzy Set
Approach to Cost Estimation of Software Projects', in Proceedings of
the 1999 Canadian Conference on Electrical and Computer Engi-
neering, IEEE Press, pp. 1068-1073.

[Pedrycz2002] Pedrycz, W. (2002), 'Computational Intelligence as an Emerging Par-
adigm of Software Engineering', in Proceedings of the 14th interna-
tional conference on Software engineering and knowledge engineer
ing, ACM Press, New York, pp. 7-14.

[Pfleeger1998] Pfleeger, S. L. (1998), Software Engineering, Theory and Practice,
Prentice Hall, New Jersey, ISBN: 0-13-624842-X

[Podorozhny1999] Podorozhny, R. Staudt Lerner, B. Osterweil, L. (1999), 'A rigorous
approach to resource management in activity coordination', Univer-
sity of Massachusetts, Amherst MA, 01003, USA.

[Pohl2005] Pohl, K.; Böckle, G. & van der Linden, F.J. (2005), Software Product
Line Engineering: Foundations, Principles and Techniques, Springer-
Verlag New York, Inc.

[Poppendieck2003] Poppendieck, M. & Poppendieck, T. (2003), Lean Software Develop-
ment, Addison Wesley, ISBN: 0-321-15078-3.

[Potts1988] Potts, C. & Bruns, G. (1988), 'Recording the reasons for design deci-
sions', in ICSE '88: Proceedings of the 10th international conference
on Software engineering, IEEE Computer Society PressLos Alami-
tos, CA, USA, pp. 418-427.

[Poundstone1993] Poundstone, W. (1993), Prisoner’s Dilemma, Anchor Books, Double
day, New York, ISBN: 038541580X.

[Power2002] Power, D. J. (2002), Decision support systems: concepts and
resources for managers, Westport, Conn., Quorum Books.

[Pressman1997] Pressman, R. S. (1997), Software Engineering, A practicioner’s
Approach, McGraw-Hill, New York, ISBN: 0-07-709411-5.

References

163

[Ramesh2001] Ramesh, B. & Jarke, M. (2001), 'Toward Reference Models of
Requirements Traceability', in Software Engineering 27(1), pp. 58-
93.

[Ran1996] Ran, A. & Kuusela, J. (1996), 'Design Decision Trees', in IWSSD '96:
Proceedings of the 8th International Workshop on Software Specifica-
tion and Design, IEEE Computer SocietyWashington, DC, USA, pp.
172-175.

[Reformat2002] Reformat, M., Pedrycz, W., Pizzi, N. J. (2002), 'Software Quality
Analysis with the use of Computational Intelligence', in Proceedings
of the 2002 IEEE International Conference on Fuzzy Systems, Vol. 2,
IEEE Press, Washington, pp. 1156-1161.

[Regli2000] Regli, W.C., Hu, X., Atwood, M. & Sun, W. (2000), 'A Survey of
Design Rationale Systems: Approaches, Representation, Capture and
Retrieval', in Engineering with Computers 16, pp. 209-235, Springer-
Verlag London Limited.

[Regnell1992] Regnell, B.; Karlsson, L. & Höst, M. (2002), 'An Analytical Model of
Requirements Selection Quality in Software Product Development',
in Second Conference on Software Engineering Research and Prac-
tise, Blekinge Institute of Technology, Karlskrona, Sweden.

[Royce1970] Royce, W. (1970), 'Managing the Development of Large Software
Systems', in Proceedings of IEEE WESCON, 26, pp. 1-9.

[Ruhe2004] Ruhe, G. (2004), 'Software Engineering Decision Support', in iCORE
Research Report, 3.

[Russel1995] Russel, S. & Norvig, P. (1995), Artifical Intelligence A Modern
Approach, Prentice Hall, ISBN: 0131038052.

[Salo1997] Salo, A. & Hämäläinen, R. (1997), 'On the measurement of prefer-
ences in the analytic hierarchy process', in Journal of multi-criteria
decision analysis, vol 6, pp. 309-319.

[Shaw1996] Shaw, M. (1996),'Truth vs Knowledge: The Difference Between
What a Component Does and What We Know It Does', in Proc. 8th
International Workshop on Software Specification and Design.

[Smithers1991] Smithers, T., Tang, M.X. & Tomes, N. (1991). 'The Maintenance of
Design History in AI-Based Design', in Proceedings of the Collo-
quium by the Institution of Electrical Engineers Professional Group
C1 (Software Engineers), London, pp. 8/1- 8/3.

Imperfect Information in Software Design Processes

164

[SPOT2007] Web address for the SPOT Toolset:
http://www.cs.utwente.nl/~noppen/public/spot.zip

[Stoelinga2002] Stoelinga, M. (2002), 'An introduction to probabilistic automata', in
G. Rozenberg (ed.) EATCS bulletin, pp. 1-23.

[Tekinerdogan2000] Tekinerdogan, B. (2000), Synthesis-Based Software Architecture
Design, Ph. D. Thesis, Print Partners Ipskamp, Enschede, ISBN 90-
365-1430-4, Also available through
http://www.cs.bilkent.edu.tr/~bedir/PhDThesis/index.htm.

[Tekinerdogan2002] Tekinerdogan, B. & Aksit, M. (2002), 'Classifying and evaluating
architecture design methods', in Mehmet Aksit (ed.) Software Archi-
tecture and Component Technology, Kluwer Academic Publishers,
pp. 3-28.

[Tretmans2001] Tretmans, J.; Wijbrans, K. & Chaudron, M. (2001), 'Software Engi-
neering with Formal Methods: The Development of a Storm Surge
Barrier Control System Revisiting Seven Myths of Formal Methods',
in Form. Methods Syst. Des. 19(2), pp. 195-215.

[Voß2003] Voß, S. & Woodruff, D.L. (2003), Introduction to computational opti-
mization models for production planning in a supply chain, Springer
Verlag.

[Yen1993] Yen, J. & Lee, J. (1993), 'Fuzzy Logic as a Basis for Specifying
Imprecise Requirements', in Proceedings of 2nd IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE'93), IEEE Computer
Society, pp. 745-749.

[Yourdon1979] Yourdon, E. & Constantine, L.L. (1979), Structured Design: Funda-
mentals of a Discipline of Computer Program and Systems Design,
Prentice-Hall.

[Zadeh1965] Zadeh, L.A. (1965), 'Fuzzy Sets', in Information and Control, 8(3),
pp. 338-353

[Zadeh1975] Zadeh, L.A. (1975), 'The concept of a linguistic variable and its appli-
cation to approximate reasoning - II.', in Inf. Sci. 8(4), pp. 301-357.

[Zadeh1978] Zadeh, L. A., (1978), 'Fuzzy sets as the basis for a theory of possibil-
ity', in Fuzzy Sets and Systems, 1, pp. 1-27.

References

165

[Zadeh1983] Zadeh, L. A., (1983), 'Commonsense knowledge representation based
on fuzzy logic', in IEEE Computer, October, pp. 61-65.

[Zadeh1983a] Zadeh, L. A., (1983), 'The role of fuzzy logic in the management of
uncertainty in expert systems', in Fuzzy Sets and Systems, 11, pp. 199-
227.

Imperfect Information in Software Design Processes

166

Appendix A

167

Chapter 0APPENDIX A - REFINEMENT STEPS OF THE TMS
This appendix describes the refinement steps for the Traffic Management System example,
used in chapter 3 to demonstrate the Artifact Trace Model. The tables in this appendix indicate
the refinement from the initial requirements until the final components in three steps, for both
the crisp requirement and the fuzzy requirement case. The initial requirement specification and
the alternative interpretations have been included in the respective sections.

A.1 Artifact Refinement for Crisp Requirements
In the Traffic Management System example, six functional requirements have been specified,
based on the description provided by the stakeholders. In chapter 3, the six requirements are
described as follows:

1 The TMS must support displaying relevant information to the users of the TMS

2 There should be an explicit, convenient model of tasks and scenarios

3 The system must support action coordination for optimal normalization of traffic flow

4 The system should support task allocation

5 Contextual Information should be accessible

6 The TMS should be able to communicate with the roadside system

As has been identified in chapter 3, the requirement specification contains considerable imper-
fection. To compare the design that result from using crisp requirements and fuzzy require-
ments, the Artifact Trace Model is used for both cases. For the example, the requirements are
refined to components in three steps, which are described in this appendix. In Table A.1 the
refinement step from requirement to problems is given, while using the initial requirement
specification as crisp requirements.

Imperfect Information in Software Design Processes

168

In the first refinement step, the requirements are refined to a set of problems that need to be
solved to implement the requirements. In the table it can be seen that requirement 1 and 4 reuse
problems from the other requirements to define their problem set. While the identified prob-
lems in this table do not describe a complete set of problems, the overlap and amount is satis-
factory for illustrational purposes.

Table A.1 From Requirements to Problems

Requirement Problems to be solved

1 P1 How do we display information

P6.1

2 P2.1 How do we express Tasks and Scenarios in an extensible manner?

P2.2 How do we capture Task and Scenarios in a portable and exportable manner?

3 P3.1 How do we normalize traffic flow with actions?

P3.2 How do we rate normalizations with respect to each other?

4 P2.1

P4.1 How do we support a generic Task Allocation Support Model?

P4.2 How do we offer this information?

5 P5.1 How do we support interaction with the system?

P5.2 How do we define a generic model that captures contextual information for

external usage?

6 P6.1 How do we make the internal data available?

P6.2 How do we realize a constant and stable communication stream?

Table A.2 From Problems to Solutions

Problem Solution

P1 S1 Displaying by interpretation and formatting for the affected user

P2.1 S2.1 XML Schema for Tasks and Scenarios

P2.2 S2.2.1 State and Scenario Models based on Language Constructs

S2.2.2 XML based Language Parser

P3.1 S3.1 Determine and execute traffic relocation strategies

P3.2 S3.2 Compare strategies based on completion time and congestion reduction

P4.1 S4.1 Task Allocation based on XML models

P4.2 S4.2.1 Open Source XML Parser

S4.2.2 XML Communication Component

P5.1 S5.1.1 Corba based MiddleWare

S5.1.2 SQL Query Component

P5.2 S5.2 Database + Standardized Database Content Output

P6.1 S6.1 Uniform Communication Interface

P6.2 S6.2.1 Video streaming support

S6.2.2 Corba based Communication

S6.1

Appendix A

169

In Table A.2 the identified problems for the crisp requirements are refined to a set of solutions
that should be provided to solve the respective problems. Again, there is reuse of solutions
among the problems, which is used in the Artifact Trace Model optimization to minimize the
implementation effort. The final step of the design process is the refinement of solutions to the
components that implement them. This step is given in Table A.3.

In this table, for each solution the components are given that are needed for their implementa-
tion. Each of the components is numbered with a roman numeral, and in the right column the
time needed for their implementation is given. With this step, the design process of the Traffic
Management System is completed. The analysis and optimization results for this design can be
found in chapter 3.

A.2 Artifact Refinement for Fuzzy Requirements
The second step is chapter 3 consists of the design of the Traffic Management System by using
a fuzzy requirement specification rather than a crisp specification. For this purpose, in chapter
3 a number of interpretations are identified for four of the requirements from the initial specifi-
cation. In Table A.4 the fuzzy requirement specification that is the starting point for the design
process is given.

Table A.3 From Solutions to Components

Solution Components Cost

S1 I Definable Views on Traffic Data Component 3

S2.1 II XML Schema for Tasks and Scenarios

III Common File Format Definition

3

0.5

S2.2.1 IV State and Scenario Models in specific language 1

S2.2.2 V Custom Language Parser Component

III

3.5

S3.1 VI Relocation Strategy Component 2

S3.2 VII Strategies Comparison and Selection Component 2

S4.1 VIII XML Schema for Task Allocation 1

S4.2.1 IX Open Source XML Parser Component 4

S4.2.2 X XML Communication Component 0.5

S5.1.1 XI Corba Communication Components 1

S5.1.2 XII SQL Query Component 0.1

S5.2 XIII Database + Database Serializer Component 0.5

S6.1 XIV Uniform Communication Interface 3

S6.2.1 XV Dynamic Protocol Support Component

XVI Video Streaming Support Component

2

2

S6.2.2 XVII Corba based Communication Component 4

Imperfect Information in Software Design Processes

170

In this table the requirement 2, 4, 5 and 6 have been identified to contain imperfection, and for
each of these requirements three alternative interpretations have been identified. In the right-
most column the membership value for each interpretation is given.

Table A.4 Interpretations of Imperfect Requirements

Requirement
Member-

ship

1 The TMS must support displaying relevant information to the users of the

TMS

1

2 There should be an explicit, convenient model of tasks and scenarios

2.1 There should be an easily extensible model of tasks and scenarios 0.8

2.2 There should be an easily understandable model of tasks and scenarios 0.9

2.3 There should be an easily exportable and portable model of tasks and sce-

narios

0.6

3 The system must support action coordination for optimal normalization of

traffic flow

1

4 The system should support task allocation

4.1 The system should support user extensible task allocation profiles 0.6

4.2 The system should support task allocation as individual task blocks 0.2

4.3 The system should support task allocation with automated decision support 0.9

5 Contextual Information should be accessible

5.1 Contextual Information should be accessible internally in a generic format 0.7

5.2 Contextual Information should be accessible externally at an interface in a

generic format

0.5

5.3 Contextual Information should be accessible both internally and externally

at an inter-face in a generic format

0.3

6 The TMS should be able to communicate with the roadside system

6.1 The Traffic Management System should be able to communicate with the

roadside system unidirectionally

0.3

6.2 The Traffic Management System should be able to communicate with the

roadside system with flexible support for separate data formats

0.6

6.3 The Traffic Management System should be able to communicate with the

roadside system for realtime video

0.8

Appendix A

171

In Table A.5 the refinement of the fuzzy requirement specification to a set of problems is
given. It can be seen that at this point the interpretations of fuzzy requirements are interpreted
as crisp requirements, without considering their membership values. This will only become
applicable in the optimization process (see chapter 3).

Table A.5 From Requirements to Problems

Req. Problems to be solved

1 P1.1 How do we display information?

P6.1.2

2.1 P2.1.1 How do we support a generic model that captures tasks and scenarios?

P2.1.2 How do we express Tasks and Scenarios in an extensible manner?

2.2 P2.2.1 How do we capture tasks and scenarios in an easily understandable manner?

P2.2.2 How do we support Tasks and Scenarios while maintaining system performance?

2.3 P2.3.1 How do we capture Tasks and Scenarios in a portable and exportable manner?

P2.1.2

3 P3.1 How do we normalize traffic flow with actions?

P3.2 How do we rate normalizations with respect to each other?

4.1 P4.1.1 How do we support a generic Task Allocation Support Model?

P4.1.2 How do we offer this information?

P2.1.2

4.2 P4.2.1 How do we offer a highly composable Task Allocation Support Model?

P4.2.2 How do we extract the information from the model

P4.1.2

4.3 P4.3.1 How do we provide reasoning support for Task Allocation?

P4.3.2 How do we extract this information from the Reasoning System?

P4.1.2

5.1 P5.1.1 How do we define a generic model that captures contextual information for internal

usage?

P5.1.2 How do we make this generic model available inside the system?

5.2 P5.2.1 How do we support interaction with the system?

P5.2.2 How do we define a generic model that captures contextual information for external

usage?

5.3 P5.1.2, P5.2.1

P5.3.1 How do we define a generic model that captures contextual information for internal

and external usage?

6.1 P6.1.1 How do we realize the unidirectional communication?

P6.1.2 How do we make the internal data available?

6.2 P6.2.1 How do we achieve dynamic switching of communication protocols?

P6.1.2

6.3 P6.3.1 How do we realize a constant and stable communication stream?

P6.1.2

Imperfect Information in Software Design Processes

172

Table A.6 describes the refinement of the problems in the previous table to a set of solution
techniques. Since the amount of problems and solutions is considerably higher than the crisp
case, the possibilities for reuse also increases, which is reflected in the table.

Table A.6 From Problems to Solutions

Problem Solution

P1.1 S1.1 Displaying by interpretation and formatting for the affected user

P2.1.1 S5.1.1

P2.1.2 S2.1.2 XML Schema for Tasks and Scenarios

P2.2.1 S2.2.1 State and Scenario Models based on StateMachines

P2.2.2 S2.2.2 State Machine Interpreter

P2.3.1 S2.3.11 State and Scenario Models based on Language Constructs

S2.3.12 XML based Language Parser

P3.1 S3.1 Determine and execute traffic relocation strategies

P3.2 S3.2 Compare strategies based on completion time and congestion reduction

P4.1.1 S4.1.1 Task Allocation based on XML models

P4.1.2 S5.1.2, S5.1.12

P4.2.1 S4.2.1 Task Allocation based on Object Oriented models

P4.2.2 S4.2.2 COM+ Component

S5.2.1

P4.3.1 S4.3.1 Task Allocation based Expert Systems

P4.3.2 S4.3.2 Text based Allocation report

P5.1.1 S5.1.11 XML-based Model for capturing contextual information

S5.1.12 Open Source XML Parser

P5.1.2 S5.1.2 XML Communication Component

P5.2.1 S5.2.11 Corba based MiddleWare

S5.2.12 SQL Query Component

P5.2.2 S5.2.2 Database + Standardized Database Content Output

P5.3.1 S5.3.1 XML Model + Database Representation

S5.1.1, S5.2.1, S5.2.2

P6.1.1 S6.1.1 Corba based Communication

P6.1.2 S6.1.2 Uniform Communication Interface

P6.2.1 S6.2.1 Dynamic Protocol Support

S6.1.1, S6.1.2

P6.3.1 S6.3.1 Video streaming support

S6.1.1, S6.1.2

Appendix A

173

In Table A.7 the final design step is described, in which the solutions from Table A.6 are
refined to sets of components that implement them. Again the components are numbered with
roman numerals, and the relevance value is indicated in the rightmost column.

Table A.7 From Solutions to Components

Solution Components Cost

S1.1 I Definable Views on Traffic Data Component 3

S2.1.2 II XML Schema for Tasks and Scenarios

XV

3

S2.2.1 III State and Scenario Models based on StateMachines

XV

1

S2.2.2 IV State Machine Interpreter Component 4

S2.3.11 V State and Scenario Models in specific language 1

S2.3.12 VI Custom Language Parser Component

XV

1

S3.1 VII Relocation Strategy Component 2

S3.2 VIII Strategies Comparison and Selection Component 2

S4.1.1 IX XML Schema for Task Allocation 3.5

S4.2.1 X Object Oriented Task Allocation Model 2

S4.2.2 XI COM+ Component 3

S4.3.1 XII Task Allocation Expert System 2

S4.3.2 XIII Text based Allocation report extractor and interface

XV

3

S5.1.11 XIV XML Model Schema

XV Common File Format Definition

2

0.5

S5.1.12 XVI Open Source XML Parser Component 4

S5.1.2 XVII XML Communication Component 0.5

S5.2.11 XVIII Corba Communication Components 1

S5.2.12 XIX SQL Query Component 0.1

S5.2.2 XX Database + Database Serializer Component 0.5

S5.3.1 XXI XML Schema and ER Diagram 1

S6.1.1 XXII Corba based Communication Component 4

S6.1.2 XXIII Uniform Communication Interface 3

S6.2.1 XXIV Dynamic Protocol Support Component 2

S6.3.1 XXV Video Streaming Support Component

XXIV

2

Imperfect Information in Software Design Processes

174

Appendix B

175

Chapter 0APPENDIX B - DERIVATION OF THE COMPARISON
OPERATORS

This appendix describes the derivation of the comparison operators for fuzzy quality require-
ments and fuzzy quality estimations presented in chapter 4. The derivation is done for require-
ments represented by semi-trapezoidal fuzzy intervals and estimations represented by
triangular fuzzy numbers. The use of these comparison operators is described in chapter 4.

B.1 Derivation of the Comparison Operator for Fuzzy Sets
The operation on fuzzy sets which is needed in this thesis is the comparison of a fuzzy estima-
tion C with a fuzzy requirement A. The result of the comparison should be a number between
zero and one, indicating the degree to which A is smaller than C. The comparison operator for
this operation is based on comparing the α−cuts of C to the α−cuts of A.

For 0<α<=1, the α-cut of a fuzzy set F with membership function µ is defined by {x |
 } and denoted by F[α]. If F is a fuzzy number or a fuzzy interval, then F[α] is an

interval. The degree of acceptance for C with respect A is defined to be:

where S(α) is the degree to which A[α] is smaller than C[α]. S(α) is defined to be the fraction
of C[α] which belongs to A[α]. With C[α] = [q(α), r(α)] and A[α] =] , p(α)] we find:

S(α) = 0 , if

S(α) = 1 , if

S(α) = , if q(α) < p(α) < r(α)

µ x() α≥

S α() αd

0

1

∫

∞–

r α() p α()≤

p α() q α()≤

p α() q α()–

r α() q α()–

Imperfect Information in Software Design Processes

176

In this thesis fuzzy estimations are assumed to be triangular fuzzy numbers (c1, c2, c3), and
requirements are assumed to be semi-trapezoidal fuzzy numbers (, a1, a2), as can be seen in
Figure B.1.

 In this case, p(α), q(α) and r(α) are given by:

p(α) = a2 - α(a2-a1)

q(α) = c1 - α(c2-c1)

r(α) = c3 - α(c3-c2)

Let the fuzzy estimation be the triangular fuzzy number (c1, c2, c3) and the fuzzy requirement
interval be the semi-trapezoidal fuzzy number (a1, a2). We define q1 and q2 as follows:

Then q1 is the α-height of the intersection of the lefthand side of the estimation with the
requirement, and q2 is the α-height of the intersection of the righthand side of the estimation
with the requirement.

S(α) can now be defined for six cases of comparing a requirement (a1, a2) with an estimation
(c1, c2, c3). The value of Comp((a1, a2), (c1, c2, c3)) is given in Table B.1, which corresponds
to the degree of acceptance of the fuzzy estimation and the fuzzy requirement. In the table for
each of the six cases a graphical depiction of the actual situation is given in the left column. In
the right column, for each situation S is defined for height α above the line, and

Comp((a1, a2), (c1, c2, c3)) =

is given below the line.

∞–

1
A C

α

a1 a2c1 c2 c3pq r

M
e

m
b

e
rs

h
ip

�

1
A C

α

a1 a2c1 c2 c3pq r

M
e

m
b

e
rs

h
ip

�

Figure B.1 Fuzzy Numbers

q1

a2 c1–

a2 a1– c2 c1–+
----------------------= q2

a2 c3–

a2 a1– c3 c2–+
----------------------=

S α() αd

0

1

∫

Appendix B

177

Table B.1 Comparing fuzzy requirements with fuzzy estimations
 &

 S(α) = 1 , for

 Comp((a1, a2), (c1, c2, c3)) = 1

 &

 , for

 , for

 &

 , for

 & &

 , for

 , for

 &

 0 , for

 0

c2 a1≤ c3 a2≤

1
AC

a1 a2c1 c2 c3

1
AC

a1 a2c1 c2 c3

0 α 1≤ ≤

c2 a1< c3 a2>

1
AC

a1 a2c1 c2 c3

q2

1
AC

a1 a2c1 c2 c3

q2

a2 c1– α a2 a1– c2 c1–+()–

c3 c1– α c3 c1–()–

0 α q2≤ ≤

1 q2 α 1≤ ≤

a2 c1–

c3 c1–

a1 c2–

c3 c1–
--------- 1

c3 a2–

a1 c2–
---------+

 ln+

c2 a1= c3 a2>

1
AC

a1 a2c1 c2 c3

1
AC

a1 a2c1 c2 c3

a2 c1–

c3 c1–
--------- 0 α 1≤ ≤

a2 c1–

c3 c1–

c2 a1> c1 a2< c3 a2≥

1
A C

a1 a2c1 c2 c3

q1

1
A C

a1 a2c1 c2 c3

q1

a2 c1– α a2 a1– c2 c1–+()–

c3 c1– α c3 c1–()–
--------------------------------------- 0 α q1≤ ≤

0 q1 α 1≤ ≤
a2 c1–

c3 c1–

c2 a1–

c3 c1–

a2 c1–

c2 a1–
--------- 1+
 ln–

c2 a1> c1 a2≥

1
A C

a1 a2 c1 c2 c3

1
A C

a1 a2 c1 c2 c3

0 α 1≤ ≤

Imperfect Information in Software Design Processes

178

B.2 Comparison Operators for Crisp Requirements
In the previous section we have derived the comparison operator for fuzzy requirements and
fuzzy estimations. Logically, for the evaluation of crisp requirements and fuzzy estimations a
similar comparison operator is needed. We can derive this comparison operator from the result
in Table B.1 by viewing crisp requirements as a special case of fuzzy requirements.

In Figure B.2 the crisp requirement interval is described by a piecewise linear function. The
sharp boundary of the requirement can be seen by the abrupt change from 1 to 0 at the value x.
Analogous to fuzzy set we call this function the membership function of the requirement inter-
val. It can be seen that in this representation crisp requirements are modeled by a special case
of fuzzy intervals. Let A be a crisp requirement with the crisp interval] , a], and let the esti-
mation C be given by the triangular fuzzy number (c1, c2, c3). The degree of acceptance for C
by A is now given in Table B.2.

 &

 ,for

 ,for

 ,for

c2 a1> c3 a2<

1
A C

a1 a2c1 c2 c3

q1

q2

1
A C

a1 a2c1 c2 c3

q1

q2

1 0 α q2≤ ≤

a2 c1– α a2 a1– c2 c1–+()–

c3 c1– α c3 c1–()–
--------------------------------------- q2 α q1≤ ≤

0 q1 α 1≤ ≤

1
c2 a1–

c3 c1–
--------- 1

c3 c1–

c2 a1– a2 c1–+
---------------------–

 ln+

0

1

xQuality Attribute �

Figure B.2 A crisp requirement

∞–

Appendix B

179

The formulas in this table are special cases of the formulas in Table B.1. By substituting a for
a1 and a2, the expressions for the degree of acceptance between crisp requirements and fuzzy
estimations is attained.

Table B.2 Comparing crisp requirements with fuzzy estimations

 &

a c1≤

1
A C

a c1 c2 c3

1
A C

a c1 c2 c3

0

c1 a c2≤<

1
A C

ac1 c2 c3

1
A C

ac1 c2 c3

a c1–

c3 c1–

c2 a–

c3 c1–

a c1–

c2 a–
------- 1+
 ln–

c2 a= a c3≤

1
A C

ac1 c2 c3

1
A C

ac1 c2 c3

a c1–

c3 c1–

c2 a c3≤<

1
A C

ac1 c2 c3

1
A C

ac1 c2 c3

a c1–

c3 c1–

a c– 2

c3 c1–
--------- 1

c3 a–

a c2–
-------+

 ln–

a c3>

1
A C

ac1 c2 c3

1
A C

ac1 c2 c3

1

Imperfect Information in Software Design Processes

180

Samenvatting

181

Chapter 0SAMENVATTING

Het ontwerpen van softwaresystemen van hoge kwaliteit is één van de meest belangrijke
onderzoeksproblemen op het gebied van de software engineering. Het onderzoek op dit gebied
heeft over de jaren geresulteerd in een veelvoud van ontwerpmethodieken, elk met zijn eigen
specifieke plus- en minpunten. Waar bijvoorbeeld het Rational Unified Process een alomvat-
tend ontwerpproces is dat de verschillende fasen van softwareontwerp uitgebreid ondersteunt,
richten zogenaamde “agile” processen, zoals “Extreme Programming”, zich meer op een flexi-
bele aanpak. Hoewel de moderne ontwerpprocessen zich genoegzaam hebben bewezen en er
een veelvoud aan ontwerpprocessen is, zijn deze allen gevoelig voor de gevolgen van imper-
fecte informatie.

Imperfecte informatie tijdens het ontwerpen van software is informatie, die tot een bepaalde
graad onzeker danwel incompleet is. Deze imperfectie kan het gevolg zijn van verschillende
oorzaken, zoals incomplete informatiebronnen of een onduidelijk beeld over wat het systeem
moet gaan doen. Vanwege het feit dergelijke informatie typisch voor meerdere interpretaties
vatbaar is, wordt de uitvoering van het softwareontwerpproces ernstig belemmerd. Met de
keuze voor een enkele interpretatie is er het risico dat deze interpretatie uiteindelijk niet de
juiste blijkt te zijn. Als gevolg hiervan kan het noodzakelijk zijn (een deel van) het systeem
opnieuw te ontwerpen, hetgeen kan leiden tot hoge kosten.

Echter, moderne ontwerpmethoden negeren veelal de aanwezigheid van imperfecte informatie.
Over het algemeen vereisen de ontwerpmethoden eenduidige en, bij voorkeur, complete speci-
ficaties van eisen, niettegenstaande het feit dat er consensus is over het feit dat dit in het alge-
meen zeer moeilijk is te realiseren. Ook wordt imperfecte informatie als gevolg van ontwerp
activiteiten over het algemeen genegeerd. Echter, imperfecte informatie is een inherent probl-
eem van vrijwel elk ontwerpproces. Toch wordt imperfectie genegeerd door het maken van
expliciete veronderstellingen welke op dit moment nog niet kunnen worden verantwoord en
kunnen leiden tot foutieve ontwerpbeslissingen. De gevolgen van het negeren van imperfecte
informatie zijn zwaarder gedurende de vroege fases van het ontwerpproces. Gedurende het
voortschrijdende ontwerpproces kunnen zowel de softwareontwerpers als de klanten tot
nieuwe inzichten komen over het te ontwerpen systeem. Omdat deze inzichten slechts drup-
pelsgewijs beschikbaar worden, is het niet mogelijk gedurende de vroege ontwerpfasen de
imperfecte informatie efficiënt te corrigeren.

In dit proefschrift identificeren we de twee gebieden waarin imperfecte informatie zich kan
manifesteren, namelijk in informatie komend uit de context van het ontwerpproces (met name
specificaties van eisen) en tijdens ontwerpactiviteiten. We analyseren de verschillende typen
imperfecte informatie and de manier waarop de imperfectie geïnterpreteerd dient te worden.
Op basis van deze analyse stellen wij extensies voor softwareontwerpprocessen voor, die op
een generieke manier imperfecte informatie kunnen modelleren. Hierdoor wordt het mogelijk
verschillende interpretaties voor ontwerpbeslissingen te beschrijven en overwegen met betrek-
king tot hun toepasselijkheid zonder hier te vroeg daadwerkelijk over te hoeven beslissen.
Door het modelleren van alternatieve interpretaties voor een ontwerpbeslissing wordt het alge-
hele ontwerp flexibeler. Nieuwe inzichten gedurende het ontwerpproces kunnen efficiënter
worden overwogen, zonder een directe noodzaak to herontwerpen.

In de hier voorgestelde methode zijn technieken gecombineerd uit verschillende disciplines
zoals het ontwerp van softwarearchitecturen, kansrekening and de theorie van vage
verzamelingen om de relevante eigenschappen van het softwareontwerpproces en imperfecte
informatie te kunnen beschrijven. De voorgestelde methodieken verhogen de werklast voor de
ontwerper waardoor we een verzameling van gereedschappen hebben geïmplementeerd die de
rekenkundige aspecten van de benadering afhandelen. De effectiviteit en het gebruikersgemak

Imperfect Information in Software Design Processes

182

van de benadering en de gereedschappen worden geanalyseerd met behulp van een experi-
ment.

M.C. van Wezel. Neural Networks for Intelli-

gent Data Analysis: theoretical and experimen-

tal aspects. Faculty of Mathematics and Natural

Sciences, UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal Specification

and Analysis of Industrial Systems. Faculty of

Mathematics and Computer Science and Faculty

of Mechanical Engineering, TU/e. 2002-02

T. Kuipers. Techniques for Understanding Leg-

acy Software Systems. Faculty of Natural Sci-

ences, Mathematics and Computer Science,

UvA. 2002-03

S.P. Luttik. Choice Quantification in Process

Algebra. Faculty of Natural Sciences, Mathe-

matics, and Computer Science, UvA. 2002-04

R.J. Willemen. School Timetable Construction:

Algorithms and Complexity. Faculty of Mathe-

matics and Computer Science, TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est: Verification

of Probabilistic, Realtime and Parametric Sys-

tems. Faculty of Science, Mathematics and

Computer Science, KUN. 2002-06

N. van Vugt. Models of Molecular Computing.

Faculty of Mathematics and Natural Sciences,

UL. 2002-07

A Fehnker. Citius, Vilius, Melius: Guiding and

Cost-Optimality in Model Checking of Timed

and Hybrid Systems. Faculty of Science, Mathe-

matics and Computer Science, KUN. 2002-08

R. van Stee. On-line Scheduling and Bin Pack-

ing. Faculty of Mathematics and Natural Sci-

ences, UL. 2002-09

D. Tauritz. Adaptive Information Filtering:

Concepts and Algorithms. Faculty of Mathemat-

ics and Natural Sciences, UL. 2002-10

M.B. van der Zwaag. Models and Logics for

Process Algebra. Faculty of Natural Sciences,

Mathematics, and Computer Science, UvA.

2002-11

J.I. den Hartog. Probabilistic Extensions of

Semantical Models. Faculty of Sciences, Divi-

sion of Mathematics and Computer Science,

VUA. 2002-12

L. Moonen. Exploring Software Systems. Fac-

ulty of Natural Sciences, Mathematics, and

Computer Science, UvA. 2002-13

J.I. van Hemert. Applying Evolutionary Com-

putation to Constraint Satisfaction and Data

Mining. Faculty of Mathematics and Natural

Sciences, UL. 2002-14

S. Andova. Probabilistic Process Algebra. Fac-

ulty of Mathematics and Computer Science, TU/

e. 2002-15

Y.S. Usenko. Linearization in µCRL. Faculty of

Mathematics and Computer Science, TU/e.

2002-16

J.J.D. Aerts. Random Redundant Storage for

Video on Demand. Faculty of Mathematics and

Computer Science, TU/e. 2003-01

M. de Jonge. To Reuse or To Be Reused: Tech-

niques for component composition and con-

struction. Faculty of Natural Sciences,

Mathematics, and Computer Science, UvA.

2003-02

J.M.W. Visser. Generic Traversal over Typed

Source Code Representations. Faculty of Natu-

ral Sciences, Mathematics, and Computer Sci-

ence, UvA. 2003-03

S.M. Bohte. Spiking Neural Networks. Faculty

of Mathematics and Natural Sciences, UL.

2003-04

T.A.C. Willemse. Semantics and Verification in

Process Algebras with Data and Timing. Faculty

of Mathematics and Computer Science, TU/e.

2003-05

S.V. Nedea. Analysis and Simulations of Cata-

lytic Reactions. Faculty of Mathematics and

Computer Science, TU/e. 2003-06

Titles in the IPA Dissertation Series since 2002

M.E.M. Lijding. Real-time Scheduling of Ter-

tiary Storage. Faculty of Electrical Engineering,

Mathematics & Computer Science, UT. 2003-07

H.P. Benz. Casual Multimedia Process Annota-

tion – CoMPAs. Faculty of Electrical Engineer-

ing, Mathematics & Computer Science, UT.

2003-08

D. Distefano. On Modelchecking the Dynamics

of Object-based Software: a Foundational

Approach. Faculty of Electrical Engineering,

Mathematics & Computer Science, UT. 2003-09

M.H. ter Beek. Team Automata – A Formal

Approach to the Modeling of Collaboration

Between System Components. Faculty of Mathe-

matics and Natural Sciences, UL. 2003-10

D.J.P. Leijen. The _ Abroad – A Functional

Approach to Software Components. Faculty of

Mathematics and Computer Science, UU. 2003-

11

W.P.A.J. Michiels. Performance Ratios for the

Differencing Method. Faculty of Mathematics

and Computer Science, TU/e. 2004-01

G.I. Jojgov. Incomplete Proofs and Terms and

Their Use in Interactive Theorem Proving. Fac-

ulty of Mathematics and Computer Science,

TU/e. 2004-02

P. Frisco. Theory of Molecular Computing –

Splicing and Membrane systems. Faculty of

Mathematics and Natural Sciences, UL. 2004-

03

S. Maneth. Models of Tree Translation. Faculty

of Mathematics and Natural Sciences, UL.

2004-04

Y. Qian. Data Synchronization and Browsing

for Home Environments. Faculty of Mathemat-

ics and Computer Science and Faculty of Indus-

trial Design, TU/e. 2004-05

F. Bartels. On Generalised Coinduction and

Probabilistic Specification Formats. Faculty of

Sciences, Division of Mathematics and Com-

puter Science, VUA. 2004-06

L. Cruz-Filipe. Constructive Real Analysis: a

Type-Theoretical Formalization and Applica-

tions. Faculty of Science, Mathematics and

Computer Science, KUN. 2004-07

E.H. Gerding. Autonomous Agents in Bargain-

ing Games: An Evolutionary Investigation of

Fundamentals, Strategies, and Business Appli-

cations. Faculty of Technology Management,

TU/e. 2004-08

N. Goga. Control and Selection Techniques for

the Automated Testing of Reactive Systems. Fac-

ulty of Mathematics and Computer Science, TU/

e. 2004-09

M. Niqui. Formalising Exact Arithmetic: Rep-

resentations, Algorithms and Proofs. Faculty of

Science, Mathematics and Computer Science,

RU. 2004-10

A. Löh. Exploring Generic Haskell. Faculty of

Mathematics and Computer Science, UU. 2004-

11

I.C.M. Flinsenberg. Route Planning Algo-

rithms for Car Navigation. Faculty of Mathe-

matics and Computer Science, TU/e. 2004-12

R.J. Bril. Real-time Scheduling for Media Pro-

cessing Using Conditionally Guaranteed Bud-

gets. Faculty of Mathematics and Computer

Science, TU/e. 2004-13

J. Pang. Formal Verification of Distributed Sys-

tems. Faculty of Sciences, Division of Mathe-

matics and Computer Science, VUA. 2004-14

F. Alkemade. Evolutionary Agent- Based Eco-

nomics. Faculty of Technology Management,

TU/e. 2004-15

E.O. Dijk. Indoor Ultrasonic Position Estima-

tion Using a Single Base Station. Faculty of

Mathematics and Computer Science, TU/e.

2004-16

S.M. Orzan. On Distributed Verification and

Verified Distribution. Faculty of Sciences, Divi-

sion of Mathematics and Computer Science,

VUA. 2004-17

M.M. Schrage. Proxima – A Presentation-ori-

ented Editor for Structured Documents. Faculty

of Mathematics and Computer Science, UU.

2004-18

E. Eskenazi and A. Fyukov. Quantitative Pre-

diction of Quality Attributes for Component-

Based Software Architectures. Faculty of Math-

ematics and Computer Science, TU/e. 2004-19

P.J.L. Cuijpers. Hybrid Process Algebra. Fac-

ulty of Mathematics and Computer Science, TU/

e. 2004-20

N.J.M. van den Nieuwelaar. Supervisory

Machine Control by Predictive-Reactive Sched-

uling. Faculty of Mechanical Engineering, TU/

e. 2004-21

E. Ábrahám. An Assertional Proof System for

Multithreaded Java - Theory and Tool Support- .

Faculty of Mathematics and Natural Sciences,

UL. 2005-01

R. Ruimerman. Modeling and Remodeling in

Bone Tissue. Faculty of Biomedical Engineer-

ing, TU/e. 2005-02

C.N. Chong. Experiments in Rights Control -

Expression and Enforcement. Faculty of Electri-

cal Engineering, Mathematics & Computer Sci-

ence, UT. 2005-03

H. Gao. Design and Verification of Lock-free

Parallel Algorithms. Faculty of Mathematics

and Computing Sciences, RUG. 2005-04

H.M.A. van Beek. Specification and Analysis of

Internet Applications. Faculty of Mathematics

and Computer Science, TU/e. 2005-05

M.T. Ionita. Scenario-Based System Architect-

ing - A Systematic Approach to Developing

Future-Proof System Architectures. Faculty of

Mathematics and Computing Sciences, TU/e.

2005-06

G. Lenzini. Integration of Analysis Techniques

in Security and Fault- Tolerance. Faculty of

Electrical Engineering, Mathematics & Com-

puter Science, UT. 2005-07

I. Kurtev. Adaptability of Model Transforma-

tions. Faculty of Electrical Engineering, Mathe-

matics & Computer Science, UT. 2005-08

T. Wolle. Computational Aspects of Treewidth -

Lower Bounds and Network Reliability. Faculty

of Science, UU. 2005-09

O. Tveretina. Decision Procedures for Equality

Logic with Uninterpreted Functions. Faculty of

Mathematics and Computer Science, TU/e.

2005- 10

A.M.L. Liekens. Evolution of Finite Popula-

tions in Dynamic Environments. Faculty of Bio-

medical Engineering, TU/e. 2005-11

J. Eggermont. Data Mining using Genetic Pro-

gramming: Classification and Symbolic Regres-

sion. Faculty of Mathematics and Natural

Sciences, UL. 2005-12

B.J. Heeren. Top Quality Type Error Messages.

Faculty of Science, UU. 2005-13

G.F. Frehse. Compositional Verification of

Hybrid Systems using Simulation Relations.

Faculty of Science, Mathematics and Computer

Science, RU. 2005-14

M.R. Mousavi. Structuring Structural Opera-

tional Semantics. Faculty of Mathematics and

Computer Science, TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis of Probabi-

listic Systems. Faculty of Mathematics and

Computer Science, TU/e. 2005-16

T. Gelsema. Effective Models for the Structure

of pi-Calculus Processes with Replication. Fac-

ulty of Mathematics and Natural Sciences, UL.

2005-17

P. Zoeteweij. Composing Constraint Solvers.

Faculty of Natural Sciences, Mathematics, and

Computer Science, UvA. 2005-18

J.J. Vinju. Analysis and Transformation of

Source Code by Parsing and Rewriting. Faculty

of Natural Sciences, Mathematics, and Com-

puter Science, UvA. 2005-19

M.Valero Espada. Modal Abstraction and Rep-

lication of Processes with Data. Faculty of Sci-

ences, Division of Mathematics and Computer

Science, VUA. 2005-20

A. Dijkstra. Stepping through Haskell. Faculty

of Science, UU. 2005- 21

Y.W. Law. Key management and link-layer

security of wireless sensor networks: energy-

efficient attack and defense. Faculty of Electri-

cal Engineering, Mathematics & Computer Sci-

ence, UT. 2005-22

E. Dolstra. The Purely Functional Software

Deployment Model. Faculty of Science, UU.

2006-01

R.J. Corin. Analysis Models for Security Proto-

cols. Faculty of Electrical Engineering, Mathe-

matics & Computer Science, UT. 2006-02

P.R.A. Verbaan. The Computational Complex-

ity of Evolving Systems. Faculty of Science, UU.

2006-03

K.L. Man and R.R.H. Schiffelers. Formal

Specification and Analysis of Hybrid Systems.

Faculty of Mathematics and Computer Science

and Faculty of Mechanical Engineering, TU/e.

2006-04

M. Kyas. Verifying OCL Specifications of UML

Models: Tool Support and Compositionality.

Faculty of Mathematics and Natural Sciences,

UL. 2006-05

M. Hendriks. Model Checking Timed Automata

- Techniques and Applications. Faculty of Sci-

ence, Mathematics and Computer Science, RU.

2006-06

J. Ketema. B¨ohm-Like Trees for Rewriting.

Faculty of Sciences, VUA. 2006-07

C.-B. Breunesse. On JML: topics in tool-

assisted verification of JML programs. Faculty

of Science, Mathematics and Computer Science,

RU. 2006-08

B. Markvoort. Towards Hybrid Molecular Sim-

ulations. Faculty of Biomedical Engineering,

TU/e. 2006-09

S.G.R. Nijssen. Mining Structured Data. Fac-

ulty of Mathematics and Natural Sciences, UL.

2006-10

G. Russello. Separation and Adaptation of Con-

cerns in a Shared Data Space. Faculty of Math-

ematics and Computer Science, TU/e. 2006-11

L. Cheung. Reconciling Nondeterministic and

Probabilistic Choices. Faculty of Science,

Mathematics and Computer Science, RU. 2006-

12

B. Badban. Verification techniques for Exten-

sions of Equality Logic. Faculty of Sciences,

Division of Mathematics and Computer Sci-

ence, VUA. 2006-13

A.J. Mooij. Constructive formal methods and

protocol standardization. Faculty of Mathemat-

ics and Computer Science, TU/e. 2006-14

T. Krilavicius. Hybrid Techniques for Hybrid

Systems. Faculty of Electrical Engineering,

Mathematics & Computer Science, UT. 2006-15

M.E. Warnier. Language Based Security for

Java and JML. Faculty of Science, Mathematics

and Computer Science, RU. 2006-16

V. Sundramoorthy. At Home In Service Dis-

covery. Faculty of Electrical Engineering, Math-

ematics & Computer Science, UT. 2006-17

B. Gebremichael. Expressivity of Timed Autom-

ata Models. Faculty of Science, Mathematics

and Computer Science, RU. 2006-18

L.C.M. van Gool. Formalising Interface Speci-

fications. Faculty of Mathematics and Computer

Science, TU/e. 2006-19

C.J.F. Cremers. Scyther – Semantics and Verifi-

cation of Security Protocols. Faculty of Mathe-

matics and Computer Science, TU/e. 2006-20

J.V. Guillen Scholten. Mobile Channels for

Exogenous Coordination of Distributed Sys-

tems: Semantics, Implementation and Composi-

tion. Faculty of Mathematics and Natural

Sciences, UL. 2006-21

H.A. de Jong. Flexible Heterogeneous Software

Systems. Faculty of Natural Sciences, Mathe-

matics, and Computer Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time reconfigurable

Network-on-Chip for streaming DSP applica-

tions. Faculty of Electrical Engineering, Mathe-

matics & Computer Science, UT. 2007-02

M. van Veelen. Considerations on Modeling for

Early Detection of Abnormalities in Locally

Autonomous Distributed Systems. Faculty of

Mathematics and Computing Sciences, RUG.

2007-03

T.D. Vu. Semantics and Applications of Process

and Program Algebra. Faculty of Natural Sci-

ences, Mathematics, and Computer Science,

UvA. 2007-04

L. Brandán Briones. Theories for Model-based

Testing: Real-time and Coverage. Faculty of

Electrical Engineering, Mathematics & Com-

puter Science, UT. 2007-05

I. Loeb. Natural Deduction: Sharing by Presen-

tation. Faculty of Science, Mathematics and

Computer Science, RU. 2007-06

M.W.A. Streppel. Multifunctional Geometric

Data Structures. Faculty of Mathematics and

Computer Science, TU/e. 2007-07

N. Trcka. Silent Steps in Transition Systems and

Markov Chains. Faculty of Mathematics and

Computer Science, TU/e. 2007-08

R. Brinkman. Searching in encrypted data.

Faculty of Electrical Engineering, Mathematics

& Computer Science, UT. 2007-09

A. van Weelden. Putting types to good use.

Faculty of Science, Mathematics and Computer

Science, RU. 2007-10

J.A.R. Noppen. Imperfect Information in Soft-

ware Development Processes. Faculty of Elec-

trical Engineering, Mathematics & Computer

Science, UT. 2007-11

Stellingen

(Propositions)

belonging to the dissertation

IMPERFECT INFORMATION

IN SOFTWARE DESIGN PROCESSES

by

Joost Noppen

I.

While it is acknowledged by most software development proc-

esses that providing precise requirement specifications is vital

for the delivery of high quality software, only few offer explicit

support for the definition of such requirements.

II.

Imperfection is an inherent property of the information used dur-

ing software development, even when it is not always recog-

nized as such.

III.

The requirements for successful iterative design of software

systems can not be fulfilled in a realistic setting, which means

design processes can not rely only on iteration to ensure the

timely delivery of systems with acceptable quality.

IV.

Development methods need to understand the nature of imper-

fection which occurs during software design, such as conflict,

ambiguity or tolerance, since this directly influences the way in

which the information should be used.

V.

For the successful application of imperfection models during

software design, at any time it should be possible to refine im-

perfection models that are used. Additionally, it should be pos-

sible to remove imperfection models in a consistent and usable

manner.

VI.

Similar to the proof by intimidation in formal methods, software

engineering has the concept of proof by irritation. By using a

constant repetition and variation of drawings and acronyms, the

hearer is inclined to believe the speaker, if only to make him

stop.

VII.

The chance of one in a million will occur nine times out of ten.

VIII.

On the northern hemisphere, a thesis ideally is written in the pe-

riod from Autumn to Spring, since then the changes in daylight

perfectly match the mental state of the writer.

IX.

The most efficient way to chart differences in eating habits be-

tween people, is to organize a barbecue for a large group of

people.

X.

Het verrichten van wetenschappelijk onderzoek kost veel

hoofdbrekens. Dit is meteen de validatie van het doen van

wetenschappelijk onderzoek, want een bekend Twents

gezegde geeft aan: ai d'r met ‘n kop tegn an könt knap’n, dan is

't wat.

